How urban soundscapes affect humans and wildlife — and what may have changed in the hush of lockdown


Kurt Iveson, University of Sydney and Dieter Hochuli, University of SydneyThe dull roar of traffic, the barking of dogs in backyards and the screeching of cockatoos at dusk. The shattering of early morning quiet by the first plane overhead or the garbage truck on its rounds. The squealed delights and occasional fights of a children’s playground.

These sounds and many more create what Canadian composer R Murray Schafer famously called a “soundscape”. Schafer, who passed away last month, helped us realise we experience cities with our ears as well as our eyes.

In recent years, studies have confirmed these soundscapes affect the well-being of urban inhabitants — both human and non-human. But with much of the country back under lockdown, urban soundscapes have changed, sometimes bringing delight, but sometimes causing new distress.

So let’s take a moment to consider how soundscapes influence our lives, and the lives of urban wildlife.

When sounds become ‘noise’

Whether it’s housemates, traffic, or construction, we tend to respond to many urban sounds by defining them as “noise”, and try to shut them out. We do this using a range of techniques and technologies: building regulations on soundproofing, controls on the times for certain activities like construction, and planning measures.

But noise mapping efforts show such regulations tend to produce uneven urban soundscapes — some people are more exposed to loud or annoying sounds than others.

Housing quality is a major factor here, and noise problems are likely exacerbated under lockdown. A recent study of pandemic housing inequality in Sydney found increased exposure to noise during lockdown is significantly contributing to poor well-being.

For example, sounds travelling across internal and external walls of apartments were frequently a source of tension in pre-pandemic times. Now, with so many more people spending more time at home, these domestic sounds inevitably increase.




Read more:
Coronavirus reminds us how liveable neighbourhoods matter for our well-being


It’s not just humans whose lives are disrupted by city noise, as many animals use sound to communicate.

The ever-vigilant New Holland honeyeaters of Australian cities use their alarm calls to warn their friends and neighbours of danger, while the iconic chorus of banjo frogs in wetlands are the hopeful calls of males seeking mates.

This is the sound a banjo frog makes.

Noisy environments can dramatically change how these animals behave. In some cases, animals adapt to their noisy environment. Some frogs, for example, overcome traffic noise disrupting their sex lives by calling at a higher pitch. Likewise, populations of bow-winged grasshoppers in Germany exposed to road noise sing at higher frequencies than those living in quieter areas.

For other animals, such as microbats in England, disruptive noise changes how they forage and move around their environments.




Read more:
How noise pollution is changing animal behaviour


In extreme cases, these human-associated noises can drive animals away from their homes, as the disruptions to their lives becomes untenable.

Urban black-tufted marmosets in Brazil have been shown to avoid areas with abundant food where noise may interfere with their vocal communication. And research shows intruding noise in stopovers for migratory birds in the United States reduces their diversity by 25%, with some species avoiding the stopovers altogether.

Black-tufted marmosets in Brazil avoid noisy habitats even when there’s plenty of food.
Shutterstock

A new quiet?

The soundscape of cities in lockdown can be dramatically different from what we have come to accept as normal.

First, there are new noises. For example, in Sydney’s areas of concern subject to tighter lockdown restrictions, people are living with the frequent intrusive noise of police helicopters patrolling their neighbourhoods, making announcements over loudspeakers about compliance.

But in other cases, as our movements and activities are restricted, some city sounds associated with a negative impact on well-being are significantly reduced. People who live near major roads, aircraft flight paths, or construction sites will certainly be noticing the quiet as road traffic is greatly reduced and non-essential construction is paused.

But of course, while this silence might be golden for some, for others the sound of silence is the sound of lost work and income. This quietude may even be considered as unwelcome or even eerie — the sonic signature of isolation, confinement and loss.

The bow-winged grasshopper adapts to noisy soundscapes by singing at higher frequencies.
Quartl/Wikimedia, CC BY-SA

Just as many animals adapt to or avoid noisy urban environments, there is a chance many will respond to this natural experiment playing out. Quieter urban environments may see the return of some of our more noise sensitive species, but this depends on the species.

The Brazilian marmosets mentioned earlier didn’t return to those locations even during quieter times, suggesting the noise left a disruptive legacy on their habitat choice, well after it was experienced. On the other hand, other experiments show some species of birds rapidly returned to sites after noise was removed from the landscape.




Read more:
Birdwatching increased tenfold last lockdown. Don’t stop, it’s a huge help for bushfire recovery


While it’s too early to confirm any early speculation about nature returning to quieter urban environments during lockdown, there is compelling evidence many people will benefit from engaging with local nature more actively than they did before.

Birdwatching increased tenfold in lockdown last year.
Matthew Willimott/Unsplash

Many more Australians are acting as urban field naturalists. Birdwatching, for example, increased tenfold in lockdown last year.

It’s clear people are seeing novelty and wonder in animals and plants that have survived and even thrived in our cities right beneath our noses the whole time. Our increased use of local greenspace during the pandemic has created new opportunities to find the extraordinary in the ordinary.

Rethinking post-pandemic soundscapes

What might we learn from this natural experiment about the soundscapes we take for granted and the soundscapes we actually want?

This is an invitation to think about whether we ought to do more to control sounds we consider “noise”. Yes, decibel levels of activities like car and air traffic matter. But it’s also an opportunity to think beyond controlling sounds, and consider how we might create soundscapes to enhance human and non-human well-being. This is easier said than done, given there’s no universal measure of what sounds give pleasure and what sounds are perceived as noise.

This aligns with the growing body of evidence on the need to reduce noise pollution and protect biodiversity when planning and managing our cities.

Like just about every other dimension of urban life, envisioning and creating an improved urban soundscape requires careful attention to spatial inequality and diversity – including of species – and a capacity to work through our differences in a fair and just way.




Read more:
Where the wild things are: how nature might respond as coronavirus keeps humans indoors


The Conversation


Kurt Iveson, Associate Professor of Urban Geography and Research Lead, Sydney Policy Lab, University of Sydney and Dieter Hochuli, Professor, School of Life and Environmental Sciences, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Some animals have excellent tricks to evade bushfire. But flames might be reaching more animals naive to the dangers


Shutterstock

Dale Nimmo, Charles Sturt University; Alex Carthey, Macquarie University; Chris J Jolly, Charles Sturt University, and Daniel T. Blumstein, University of California, Los AngelesThe new report by the Intergovernmental Panel on Climate Change paints a sobering picture of the warming climate in coming decades. Among the projections is an increase in fire weather, which will expose Earth’s landscapes to more large and intense megafires.

In our paper, published today in Global Change Biology, we considered what this fiery future might mean for the planet’s wildlife. We argue a lot can be learned by looking at how wildlife responds to a very different threat: predators.

Australia has seen the brutal consequences that occur when native wildlife is exposed to introduced predators. Australian animals have not evolved alongside introduced predators, such as cats and foxes, and some are what scientists call “predator naive” — they simply aren’t equipped with the evolutionary instincts to detect and respond to introduced predators before it’s too late.

Now, let’s take that idea and apply it to fires. Some animals have evolved excellent tricks to detect when a bushfire is nearby. But some areas where infernos were once rare are growing increasingly bushfire-prone, thanks to climate change. The wildlife in these spots may not have the evolutionary know-how to detect a fire before it’s too late.

Just as being “predator naive” has decimated Australian wildlife, will being “fire naive” wreak havoc on our native species?

Behaviour forged in fire

A growing list of studies show the tricks animals from fire-prone areas use to survive the flames.

Sleepy lizards have been shown to panic at the smell of burnt pastry, reed frogs leap away from the crackling sounds of fire, and bats and marsupials wake from torpor after smelling smoke.

And one study found that, when exposed to smoke, Mediterranean lizards from fire-prone areas reacted more strongly than Mediterranean lizards from areas where fire was rare.

These studies show some animals can recognise the threat of fire, and behave in a way that increases their chance of survival. Those that can are more likely to live through fire and pass on those abilities to their offspring.

That’s where the parallels between fire and predation become striking — and potentially worrying.

Reading the cues

It’s well known predators and prey are in an ongoing evolutionary race to outmanoeuvre one another.

One tool prey draw upon to avoid becoming predator food is to recognise cues — such as smells, sights and sounds — that indicate a predator is lurking nearby. Once they do, prey can change their behaviour to minimise the risk of becoming dinner.

Research showed the Mediterranean skink can smell a fire.
Research has shown the Mediterranean skink can smell a fire.
By Balles2601 / Wikimedia Commons / CC BY-SA 4.0, CC BY-SA 4.0, CC BY

Decades of research has shown that when prey evolve alongside a predator, they can become highly adept at recognising their predator’s cues, such as a scent markings or territorial calls.

But what about animals that haven’t evolved alongside these lethal threats?

When a new predator enters an ecosystem, prey that have not evolved with it can be naive to its cues. They might fail to recognise the threat implied by the new predator’s scents, signs, or sounds, placing them at substantial risk.

This “predator naivety” helps explain why introduced predators are global drivers of extinction. Naive prey just don’t hear, smell, or see them coming.




Read more:
There’s no end to the damage humans can wreak on the climate. This is how bad it’s likely to get


Which species are ‘fire naive’?

Research on how animals respond to fire cues has focused on animals from fire-prone regions, probably because that’s where you’d expect to find the strongest responses. But more research is needed about animals from regions that rarely burn.

Do these animals also recognise the cues of fire as an approaching lethal threat?

Do they have finely tuned behaviours that help them survive fire?

Are they “fire naive”?

We don’t know. And that’s a worry because recent changes in global fire activity, triggered by a warming and drying climate, are seeing fires enter ecosystems long regarded as “fire-free”.

If they are naive to fire, species in these ecosystems might be more at risk than previously thought.

The search for fire naivety

We urge researchers around the world to assess fire naivety of animals, particularly in areas experiencing a change in their fire regimes, such as from rare to frequent fire or increased fire severity.

Evidence suggests recognition of predator cues is at least partly genetic. It will be important to determine whether the capacity to recognise and respond to fire also has a genetic basis.

If those behaviours can be passed on from one generation to the next, then perhaps we could take fire-savvy individuals from fire-prone areas and place them into fire naive populations, in the hope their favourable behaviours will spread rapidly via genes passed onto their offspring. Scientists call this “targeted gene flow”.

As the world continues to warm and megafires rage across the globe, we will need all the knowledge and tools at our disposal to help avoid an acceleration of Earth’s biodiversity crisis.




Read more:
Artificial refuges are a popular stopgap for habitat destruction, but the science isn’t up to scratch


The Conversation


Dale Nimmo, Associate Professor in Ecology, Charles Sturt University; Alex Carthey, Macquarie University Research Fellow, Macquarie University; Chris J Jolly, Postdoctoral Research Fellow, Charles Sturt University, and Daniel T. Blumstein, Professor in the Department of Ecology and Evolutionary Biology and the Institute of the Environment and Sustainability, University of California, Los Angeles

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Artificial refuges are a popular stopgap for habitat destruction, but the science isn’t up to scratch


Shutterstock

Darcy Watchorn, Deakin University; Dale Nimmo, Charles Sturt University; Mitchell Cowan, Charles Sturt University, and Tim Doherty, University of SydneyWildlife worldwide is facing a housing crisis. When land is cleared for agriculture, mining, and urbanisation, habitats and natural refuges go with it, such as tree hollows, rock piles and large logs.

The ideal solution is to tackle the threats that cause habitat loss. But some refuges take hundreds of years to recover once destroyed, and some may never recover without help. Tree hollows, for example, can take 180 years to develop.

As a result, conservationists have increasingly looked to human-made solutions as a stopgap. That’s where artificial refuges come in.

If the goal of artificial refuges is to replace lost or degraded habitat, then it is important we have a good understanding of how well they perform. Our new research reviewed artificial refuges worldwide — and we found the science underpinning them is often not up to scratch.

What are artificial refuges?

Artificial refuges provide wildlife places to shelter, breed, hibernate, or nest, helping them survive in disturbed environments, whether degraded forests, deserts or urban and agricultural landscapes.

Nest boxes are a commonly used artificial refuge for tree-dwelling animals.
Ed Reinsel/Shutterstock

You’re probably already familiar with some. Nest boxes for birds and mammals are one example found in many urban and rural areas. They provide a substitute for tree hollows when land is cleared.

Other examples include artificial stone cavities used in Norway to provide places for newts to hibernate in urban and agricultural environments, and artificial bark used in the USA to allow bats to roost in the absence of trees. And in France, artificial burrows provide refuge for lizards in lieu of their favoured rabbit burrows.

An artificial burrow created for a burrowing owl.
AZ Outdoor Photography/Shutterstock

But do we know if they work?

Artificial refuges can be highly effective. In central Europe, for example, nest boxes allowed isolated populations of a colourful bird, the hoopoe, to reconnect — boosting the local genetic diversity.

Still, they are far from a sure thing, having at times fallen short of their promise to provide suitable homes for wildlife.




Read more:
DIY habitat: my photos show chainsaw-carved tree hollows make perfect new homes for this mysterious marsupial


One study from Catalonia found 42 soprano pipistrelles (a type of bat) had died from dehydration within wooden bat boxes, due to a lack of ventilation and high sun exposure.

Another study from Australia found artificial burrows for the endangered pygmy blue tongue lizard had a design flaw that forced lizards to enter backwards. This increased their risk of predation from snakes and birds.

And the video below from Czech conservation project Birds Online shows a pine marten (a forest-dwelling mammal) and tree sparrow infiltrating next boxes to steal the eggs of Tengmalm’s owls and common starlings.

The effects of predation should be considered when using artificial refuges.

So why is this happening?

Our research investigated the state of the science regarding artificial refuges worldwide.

We looked at more than 220 studies, and we found they often lacked the rigour to justify their widespread use as a conservation tool. Important factors were often overlooked, such as how temperatures inside artifical refuges compare to natural refuges, and the local abundance of food or predators.

Alarmingly, just under 40% of studies compared artificial refuges to a control, making it impossible to determine the impacts artificial refuges have on the target species, positive or negative.

This is a big problem, because artificial refuges are increasingly incorporated into programs that seek to “offset” habitat destruction. Offsetting involves protecting or creating habitat to compensate for ecological harm caused by land clearing from, for instance, mining or urbanisation.

For example, one project in Australia relied heavily on nest boxes to offset the loss of old, hollow-bearing trees.

But a scientific review of the project showed it to be a failure, due to low rates of uptake by target species (such as the superb parrot) and the rapid deterioration of the nest boxes from falling trees.




Read more:
The plan to protect wildlife displaced by the Hume Highway has failed


The future of artificial refuges

There is little doubt artificial refuges will continue to play a role in confronting Earth’s biodiversity crisis, but their limitations need to be recognised, and the science underpinning them must improve. Our new review points out areas of improvement that spans design, implementation, and monitoring, so take a look if you’re involved in these sorts of projects.

We also urge for more partnerships between ecologists, engineers, designers and the broader community. This is because interdisciplinary collaboration brings together different ways of thinking and helps to shed new light on complex problems.

Some key steps arising from our research which suggest a way forward for artificial refuge science and implementation.
Author provided

It’s clear improving the science around artificial refuges is well worth the investment, as they can give struggling wildlife worldwide a fighting chance against further habitat destruction and climate change.




Read more:
To save these threatened seahorses, we built them 5-star underwater hotels


The Conversation


Darcy Watchorn, PhD Candidate, Deakin University; Dale Nimmo, Associate Professor in Ecology, Charles Sturt University; Mitchell Cowan, PhD Candidate, Charles Sturt University, and Tim Doherty, ARC DECRA Fellow, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Don’t hike so close to me: How the presence of humans can disturb wildlife up to half a mile away


What are you looking at? Greg Shine, BLM/Flickr, CC BY

Jeremy Dertien, Clemson University ; Courtney Larson, University of Wyoming, and Sarah Reed, Colorado State University

Millions of Americans are traveling this summer as pandemic restrictions wind down. Rental bookings and crowds in national parks show that many people are headed for the great outdoors.

Seeing animals and birds is one of the main draws of spending time in nature. But as researchers who study conservation, wildlife and human impacts on wild places, we believe it’s important to know that you can have major effects on wildlife just by being nearby.

In a recent review of hundreds of studies covering many species, we found that the presence of humans can alter wild animal and bird behavior patterns at much greater distances than most people may think. Small mammals and birds may change their behavior when hikers or birders come within 300 feet (100 meters) – the length of a football field. Large birds like eagles and hawks can be affected when humans are over 1,300 feet (400 meters) away – roughly a quarter of a mile. And large mammals like elk and moose can be affected by humans up to 3,300 feet (1,000 meters) away – more than half a mile.

Elk viewed over a hiker's shoulder.
A hiker about 75 feet from a bull elk in Yellowstone National Park. Jacob W. Frank, NPS/Flickr

Many recent studies and reports have shown that the world is facing a biodiversity crisis. Over the past 50 years, Earth has lost so many species that many scientists believe the planet is experiencing its sixth mass extinction – due mainly to human activities.

Protected areas, from local open spaces to national parks, are vital for conserving plants and animals. They also are places where people like to spend time in nature. We believe that everyone who uses the outdoors should understand and respect this balance between outdoor recreation, sustainable use and conservation.

How human presence affects wildlife

Pandemic lockdowns in 2020 confined many people indoors – and wildlife responded. In Istanbul, dolphins ventured much closer to shore than usual. Penguins explored quiet South African Streets. Nubian ibex grazed on Israeli playgrounds. The fact that animals moved so freely without people present shows how wild species change their behavior in response to human activities.

Decades of research have shown that outdoor recreation, whether it’s hiking, cross-country skiing or riding all-terrain vehicles, has negative effects on wildlife. The most obvious signs are behavioral changes: Animals may flee from nearby people, decrease the time they feed and abandon nests or dens.

Other effects are harder to see, but can have serious consequences for animals’ health and survival. Wild animals that detect humans can experience physiological changes, such as increased heart rates and elevated levels of stress hormones.

And humans’ outdoor activities can degrade habitat that wild species depend on for food, shelter and reproduction. Human voices, off-leash dogs and campsite overuse all have harmful effects that make habitat unusable for many wild species.

Disturbing shorebirds can cause them to stop eating, stop feeding their young or flee their nests, leaving chicks vulnerable.

Effects of human presence vary for different species

For our study we examined 330 peer-reviewed articles spanning 38 years to locate thresholds at which recreation activities negatively affected wild animals and birds. The main thresholds we found were related to distances between wildlife and people or trails. But we also found other important factors, including the number of daily park visitors and the decibel levels of people’s conversations.

The studies that we reviewed covered over a dozen different types of motorized and nonmotorized recreation. While it might seem that motorized activities would have a bigger impact, some studies have found that dispersed “quiet” activities, such as day hiking, biking and wildlife viewing, can also affect which wild species will use a protected area.

Put another way, many species may be disturbed by humans nearby, even if those people are not using motorboats or all-terrain vehicles. It’s harder for animals to detect quiet humans, so there’s a better chance that they’ll be surprised by a cross-country skier than a snowmobile, for instance. In addition, some species that have been historically hunted are more likely to recognize – and flee from – a person walking than a person in a motorized vehicle.

Generally, larger animals need more distance, though the relationship is clearer for birds than mammals. We found that for birds, as bird size increased, so did the threshold distance. The smallest birds could tolerate humans within 65 feet (20 meters), while the largest birds had thresholds of roughly 2,000 feet (600 meters). Previous research has found a similar relationship. We did not find that this relationship existed as clearly for mammals.

We found little research on impact thresholds for amphibians and reptiles, such as lizards, frogs, turtles and snakes. A growing body of evidence shows that amphibians and reptiles are disturbed and negatively affected by recreation. So far, however, it’s unclear whether those effects reflect mainly the distance to people, the number of visitors or other factors.

Graphic showing distances at which human presence affects animals' behavior.
Human recreation starts to affect wild creatures’ behavior and physical state at different distances. Small mammals and birds tolerate closer recreation than do larger birds of prey and large mammals. Sarah Markes, CC BY-ND

How to reduce your impact on wildlife

While there’s much still to learn, we know enough to identify some simple actions people can take to minimize their impacts on wildlife. First, keep your distance. Although some species or individual animals will become used to human presence at close range, many others won’t. And it can be hard to tell when you are stressing an animal and potentially endangering both it and yourself.

Second, respect closed areas and stay on trails. For example, in Jackson Hole, Wyoming, wildlife managers seasonally close some backcountry ski areas to protect critical habitat for bighorn sheep and reduce stress on other species like moose, elk and mule deer. And rangers in Maine’s Acadia National Park close several trails annually near peregrine falcon nests. This reduces stress to nesting birds and has helped this formerly endangered species recover.

 

 

 

Getting involved with educational or volunteer programs is a great way to learn about wildlife and help maintain undisturbed areas. As our research shows, balancing recreation with conservation means opening some areas to human use and keeping others entirely or mostly undisturbed.

As development fragments wild habitat and climate change forces many species to shift their ranges, movement corridors between protected areas become even more important. Our research suggests that creating recreation-free wildlife corridors of at least 3,300 feet (1,000 meters) wide can enable most species to move between protected areas without disturbance. Seeing wildlife can be part of a fun outdoor experience – but for the animals’ sake, you may need binoculars or a zoom lens for your camera.

[Get our best science, health and technology stories. Sign up for The Conversation’s science newsletter.]The Conversation

Jeremy Dertien, PhD Candidate in Forestry and Environmental Conservation, Clemson University ; Courtney Larson, Adjunct Assistant Professor, University of Wyoming, and Sarah Reed, Affiliate Faculty in Fish, Wildlife and Conservation Biology, Colorado State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Repeating mistakes: why the plan to protect the world’s wildlife falls short


The forty-spotted pardalote is one of Australia’s rarest birds.
Shutterstock

Michelle Lim, Macquarie UniversityIt’s no secret the world’s wildlife is in dire straits. New data shows a heatwave in the Pacific Northwest killed more than 1 billion sea creatures in June, while Australia’s devastating bushfires of 2019-2020 killed or displaced 3 billion animals. Indeed, 1 million species face extinction worldwide.

These numbers are overwhelming, but a serious global commitment can help reverse current tragic rates of biodiversity loss.

This week the UN’s Convention on Biological Diversity released a draft of its newest ten-year global plan. Often considered to be the Paris Agreement of biodiversity, the new plan aims to galvanise planetary scale action to achieve a world “living in harmony with nature” by 2050.

But if the plan goes ahead in its current form, it will fall short in safeguarding the wonder of our natural world. This is primarily because it doesn’t legally bind nations to it, risking the same mistakes made by the last ten-year plan, which didn’t stop biodiversity decline.

A lack of binding obligations

The Convention on Biological Diversity is a significant global agreement and almost all countries are parties to it. This includes Australia, which holds the unwanted record for the greatest number of mammal extinctions since European colonisation.

However, the convention is plagued by the lack of binding obligations. Self-reporting to the convention secretariat is the only thing the convention makes countries do under international law.

All other, otherwise sensible, provisions of the convention are limited by a series of get-out-of-jail clauses. Countries are only required to implement provisions “subject to national legislation” or “as far as possible and as appropriate”.

The convention has used non-binding targets since 2000 in its attempt to address global biodiversity loss. But this has not worked.

Kangaroo in burnt bushland
More than 3 billion animals were killed or displaced as a result of the 2019-2020 bushfires.
Shutterstock

The ten-year term of the previous targets, the Aichi Targets, came to an end in 2020, and included halving habitat loss and preventing extinction. But these, alongside most other Aichi targets, were not met.

In the new draft targets, extinction is no longer specifically named — perhaps relegated to the too hard basket. Pollution appears again in the new targets, and now includes a specific mention of eliminating plastic pollution.

Is this really a Paris-style agreement?

I wish. Calling the plan a Paris-style agreement suggests it has legal weight, when it doesn’t.

The fundamental difference between the biodiversity plan and the Paris Agreement is that binding commitments are a key component of the Paris Agreement. This is because the Paris Agreement is the successor of the legally binding Kyoto Protocol.

The final Paris Agreement legally compels countries to state how much they will reduce their emissions by. Nations are then expected to commit to increasingly ambitious reductions every five years.




Read more:
Raze paradise to put in a biofuel crop? No, there are far better ways to tackle climate change


If they don’t fulfil these commitments, countries could be in breach of international law. This risks damage to countries’ reputation and international standing.

The door remains open for some form of binding commitment to emerge from the biodiversity convention. But negotiations to date have included almost no mention of this being a potential outcome.

Bleached coral
Ecosystems humans rely on are in peril, such as the Great Barrier Reef which was recently recommended to be placed on the world heritage ‘in danger’ list.
Shutterstock

So what else needs to change?

Alongside binding agreements, there are many other aspects of the convention’s plan that must change. Here are three:

First, we need truly transformative measures to tackle the underlying economic and social causes of biodiversity loss.

The plan’s first eight targets are directed at minimising the threats to biodiversity, such as the harvesting and trade of wild species, area-based conservation, climate change and pollution.

While this is important, the plan also needs to call out and tackle dominant worldviews which equate continuous economic growth with human well-being. The first eight targets cannot realistically be met unless we address the economic causes driving these threats: materialism, unsustainable production and over-consumption.




Read more:
‘Revolutionary change’ needed to stop unprecedented global extinction crisis


Second, the plan needs to put Indigenous peoples’ knowledge, science, governance, rights and voices front and centre.

An abundance of evidence shows lands managed by Indigenous and local communities have significantly better biodiversity outcomes. But biodiversity on Indigenous lands is decreasing and with it the knowledge for continued sustainable management of these ecosystems.

Indigenous peoples and local communities have “observer status” within the convention’s discussions, but references to Indigenous “knowledges” and “participation” in the draft plan don’t go much further than in the Aichi Targets.

A mother orangutan carrying its baby
Actions in one part of the globe can have significant impacts to biodiversity in other parts.
Shutterstock

Third, there must be cross-scale collaborations as global economic, social and environmental systems are connected like never before.

The unprecedented movement of people and goods and the exchange of money, information and resources means actions in one part of the globe can have significant biodiversity impacts in faraway lands. The draft framework does not sufficiently appreciate this.

For example, global demand for palm oil contributes to deforestation of orangutan habitat in Borneo. At the same time, consumer awareness and social media campaigns in countries far from palm plantations enable distant people to help make a positive difference.

The road to Kunming

The next round of preliminary negotiations of the draft framework will take place virtually from August 23 to September 3 2021. And it’s likely final in-person negotiations in Kunming, China will be postponed until 2022.

It’s not all bad news, there is still much to commend in the convention’s current draft plan.

For example, the plan facilitates connections with other global processes, such as the UN’s Sustainable Development Goals. It recognises the contributions of biodiversity to, for instance, nutrition and food security, echoing Sustainable Development Goal 2 of “zero hunger”.

The plan also embraces more inclusive language, such as a shift from saying “ecosystem services” to “Nature’s Contribution to People” when discussing nature’s multiple values.




Read more:
‘Existential threat to our survival’: see the 19 Australian ecosystems already collapsing


But if non-binding targets didn’t work in the past, then why does the convention think this time will be any different?

A further set of unmet biodiversity goals and targets in 2030 is an unacceptable scenario. At the same time, there’s no point aiming at targets that merely maintain the status quo.

We can change the current path of mass extinction. This requires urgent, concerted and transformative action towards a thriving planet for people and nature.The Conversation

Michelle Lim, Senior Lecturer, Macquarie Law School, Macquarie University

This article is republished from The Conversation under a Creative Commons license. Read the original article.