COVID has reached Antarctica. Scientists are extremely concerned for its wildlife



Shutterstock

Michelle Power, Macquarie University and Meagan Dewar, Federation University Australia

In December, Antarctica lost its status as the last continent free of COVID-19 when 36 people at the Chilean Bernardo O’Higgins research station tested positive. The station’s isolation from other bases and fewer researchers in the continent means the outbreak is now likely contained.

However, we know all too well how unpredictable — and pervasive — the virus can be. And while there’s currently less risk for humans in Antarctica, the potential for the COVID-19 virus to jump to Antarctica’s unique and already vulnerable wildlife has scientists extremely concerned.

We’re among a global team of 15 scientists who assessed the risks of the COVID-19 virus to Antarctic wildlife, and the pathways the virus could take into the fragile ecosystem. Antarctic wildlife haven’t yet been tested for the COVID-19 virus, and if it does make its way into these charismatic animals, we don’t know how it could affect them or the continent’s ecosystem stability.

A person looking at the red research station in the distance, by the ocean
Bernardo O Higgins Station in Antarctica, where 36 people tested positive to COVID-19.
Stone Monki/Wikimedia, CC BY-SA

Jumping from animals to humans, and back to animals

The COVID-19 virus is one of seven coronaviruses found in people — all have animal origins (dubbed “zoonoses”), and vary in their ability to infect different hosts. The COVID-19 virus is thought to have originated in an animal and spread to people through an unknown intermediate host, while the SARS outbreak of 2002-2004 likely came from raccoon dogs or civets.

Given the general ubiquity of coronaviruses and the rapid saturation of the global environment with the COVID-19 virus, it’s paramount we explore the risk for it to spread from people to other animals, known as “reverse zoonoses”.

The World Organisation for Animal Health is monitoring cases of the COVID-19 virus in animals. To date, only a few species around the globe have been found to be susceptible, including mink, felines (such as lions, tigers and cats), dogs and a ferret.

Whether the animal gets sick and recovers depends on the species. For example, researchers found infected adolescent cats got sick but could fight off the virus, while dogs were much more resistant.




Read more:
Can your pets get coronavirus, and can you catch it from them?


Researchers and tourists

While mink, dogs or cats are not in Antarctica, more than 100 million flying seabirds, 45% of the world’s penguin species, 50% of the world’s seal populations and 17% of the world’s whale and dolphin species inhabit the continent.

A tourist sits near a penguin and takes a photo
Tourists visit penguin roosts in large numbers.
Shutterstock

In a 2020 study, researchers ran computer simulations and found cetaceans — whales, dolphins or porpoises — have a high susceptibility of infection from the virus, based on the makeup of their genetic receptors to the virus. Seals and birds had a lower risk of infection.

We concluded that direct contact with people poses the greatest risk for spreading the virus to wildlife, with researchers more likely vectors than tourists. Researchers have closer contact with wildlife: many Antarctic species are found near research stations, and wildlife studies often require direct handling and close proximity to animals.

Tourists, however, are still a concerning vector, as they visit penguin roosts and seal haul-out sites (where seals rest or breed) in large numbers. For instance, a staggering 73,991 tourists travelled to the continent between October 2019 and April 2020, when COVID-19 was just emerging.

Each visitor to Antarctica carries millions of microbial passengers, such as bacteria, and many of these microbes are left behind when the visitors leave. Most are likely benign and probably die off. But if the pandemic has taught us anything, it takes only one powerful organism to jump hosts to cause a pandemic.

How to protect Antarctic wildlife

There are guidelines for visitors to reduce the risk of introducing infectious microbes. This includes cleaning clothes and equipment before heading to Antarctica and between animal colonies, and keeping at least five metres away from animals.

These rules are no longer enough in COVID times, and more measures must be taken.

The first and most crucial step to protect Antarctic wildlife is controlling human-to-human spread, particularly at research stations. Everyone heading to Antarctica should be tested and quarantined prior to travelling, with regular ongoing tests throughout the season. The fewer people with COVID-19 in Antarctica, the less opportunity the virus has to jump to animal hosts.

A killer whale poking its head out the water near sea ice
Cetaceans, such as orcas, are more susceptible to COVID infections than sea birds and seals.
Shutterstock

Second, close contact with wildlife should be restricted to essential scientific purposes only. All handling procedures should be re-evaluated, given how much we just don’t know about the virus.

We recommend all scientific personnel wear appropriate protective equipment (including masks) at all times when handling, or in close proximity to, Antarctic wildlife. Similar recommendations are in place for those working with wildlife in Australia.

Migrating animals that may have picked up COVID-19 from other parts of the world could also spread it to other wildlife in Antarctica. Skuas, for example, migrate to Antarctica from the South American coast, where there are enormous cases of COVID-19.




Read more:
Coronavirus: wastewater can tell us where the next outbreak will be


And then there’s the issue of sewage. Around 37% of bases release untreated sewage directly into the Antarctic ecosystem. Meanwhile, an estimated 57,000 to 114,000 litres of sewage per day is dumped from ships into the Southern Ocean.

Fragments of the COVID virus can be found in wastewater, but these fragments aren’t infectious, so sewage isn’t considered a transmission risk. However, there are other potentially dangerous microbes found in sewage that could be spread to animals, such as antibiotic-resistant bacteria.

A huge cruise ship in icy Antarctic waters
Ships dump 114,000 litres of sewage into the water, each day.
Shutterstock

We can curb the general risk of microbes from sewage if the Antarctic Treaty formally recognises microbes as invasive species and a threat to the Antarctic ecosystem. This would support better biosecurity practices and environmental control of waste.

Taking precautions

In these early stages of the pandemic, scientists are scrambling to understand complexity of COVID-19 and the virus’s characteristics. Meanwhile, the virus continues to evolve.

Until the true risk of cross-species transmission is known, precautions must be taken to reduce the risk of spread to all wildlife. We don’t want to see the human footprint becoming an epidemic among Antarctic wildlife, a scenario that can be mitigated by better processes and behaviours.




Read more:
Humans threaten the Antarctic Peninsula’s fragile ecosystem. A marine protected area is long overdue


The Conversation


Michelle Power, Associate Professor in the Department of Biological Sciences, Macquarie University and Meagan Dewar, Lecturer, Federation University Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Humans force wild animals into tight spots, or send them far from home. We calculated just how big the impact is



Eric Fortin/Flickr, CC BY-NC-ND

Tim Doherty, University of Sydney; Don Driscoll, Deakin University, and Graeme Hays, Deakin University

The COVID pandemic has shown us that disruptions to the way we move around, complete daily activities and interact with each other can shatter our wellbeing.

This doesn’t apply only to humans. Wildlife across the globe find themselves in this situation every day, irrespective of a global pandemic.

Our latest research published today in Nature Ecology and Evolution has, for the first time, quantified the repercussions of logging, pollution, hunting, and other human disturbances, on the movements of a wide range of animal species.

Our findings were eye-opening. We found human disturbances, on average, restricted an animal’s movements by 37%, or increased it by 70%. That’s like needing to travel an extra 11 km to get to work each day (Australia’s average is 16 km).

Disruptions cascade through the ecosystem

The ability to travel is essential to animal survival because it allows animals to find mates, food and shelter, escape predators and competitors, and avoid disturbances and threats.




Read more:
It’s not too late to save them: 5 ways to improve the government’s plan to protect threatened wildlife


And because animal movement is linked to many important ecological processes — such as pollination, seed dispersal and soil turnover — disruptions to movement can cascade through ecosystems.

Our study involved analysing published data on changes in animal movement in response to different types of disturbance or habitat modification by humans. This included agriculture, logging, grazing, recreation, hunting, and pollution, amongst others.

All up, we looked at 719 records of animal movement, spanning 208 studies and 167 species of birds, mammals, reptiles, fish, insects and amphibians. The size of the species we studied ranged from the sleepy orange butterfly to the white shark.

Species included in our study, clockwise from top-left: sleepy orange butterfly, southern leopard frog, tawny owl, white shark, diademed sifaka and red-eared slider turtle.
Photos adapted from Flickr under Creative Commons license CC BY 2.0. Clockwise from top-left: Anne Toal; Trish Hartmann; Les Pickstock; Elias Levy; John Crane; USFWS Midwest Region.

What we found

We found changes in movement are very common, with two-thirds of the 719 cases comprising an increase or decrease in movement of 20% or more. More than one-third of cases changed by 50% or more.

Whether an animal increases or decreases its movement in response to disturbance from humans depends on the situation.

Animals may run away from humans, or move further in search of food and nesting sites. For example, a 2020 study on koalas found their movements were longer and more directed in areas where habitats weren’t well connected, because they had to travel further to reach food patches.

Likewise, the daily movement distances of mountain brushtail possums in central Victoria were 57% higher in remnant bushland along roadsides, compared to large forest areas.

Land clearing can cause animals to move through risky areas in search of suitable habitat.
Tim Doherty, Author provided

Decreases in movement can occur where animals encounter barriers (such as highways), if they need to shelter from a disturbance, or can’t move as efficiently through altered habitats. In the United States, for example, researchers played a recording of humans talking and found it caused a 34% decrease in the speed that mountain lions move.

On the other hand, some decreases in movement occur where an animal actually benefits from habitat changes. A wide range of animals — including storks, vultures, crows, foxes, mongooses, hyenas and monitor lizards — have shorter movements around garbage dumps because they don’t have to move very far to get the food they need.

Huge changes in movement make animals vulnerable

Overall, we found the average increase in animal movement was +70% and the average decrease was -37%, which are substantial changes.

Imagine having to increase the distance you travel to work, the shops and to see family and friends, by 70%. You would spend a lot more time and energy travelling and have less time to rest or do fun things. And if you live in Melbourne, you know what substantial reductions in movement are like due to COVID-related lockdowns.

Examples of what a 70% increase (bottom left) and a 37% decrease (bottom right) in your normal home range (top) might look life if you lived in Melbourne.

In addition to greater energy expenditure, increased movements can mean animals need to move through risky areas where they are more vulnerable to predation.

And decreases in movement can be harmful if animals can’t find adequate food or disperse to find mates, or if ecological processes such as seed dispersal are disrupted.




Read more:
Predators, prey and moonlight singing: how phases of the Moon affect native wildlife


For example, flightless rails, birds native to New Zealand, are important for dispersing seeds. But research showed birds in areas of high human activity (campgrounds) moved 35–41% shorter distances than birds away from campgrounds. This could limit the population growth of plants if their seeds are not being dispersed as far.

When disturbances are unpredictable

We compared the effects of different disturbance types on animals by splitting them into two categories: human activities (such as hunting, military procedures and recreation like tourism) and habitat modification (such as agriculture and logging).

Both disturbance types can have severe impacts, ranging from a 90% decrease to 1,800% increase in movement for human activities, and a 97% decrease to a 3,300% increase for habitat modifications.

Changes in animal movement distances in response to different types of disturbance. Positive values mean movement was higher in disturbed compared to undisturbed areas.

But we found human activities caused much stronger increases in animal movement distances (averaging +35%) than habitat modifications (averaging +12%).

This might be because human activities are more episodic in nature. In other words, animals are more likely to run away from these unpredictable disturbances.




Read more:
Be still, my beating wings: hunters kill migrating birds on their 10,000km journey to Australia


For example, military manoeuvres in Norway led to 84% increase in the home range of moose. And when moose in Sweden were exposed to back-country skiers, their movement speed increased 33-fold.

In contrast, habitat modifications like logging generally represent more persistent changes to the environment, which animals can sometimes adapt to over time.

Moose head behind green bushes
Human activities can lead to huge changes in the movement of animals, such as moose.
Shutterstock

Reducing harms on wildlife

To reduce the harms we inflict on wildlife, we must protect habitats in relatively intact sea and landscapes from getting degraded or transformed. This could include establishing and managing new national parks and marine protected areas.

Where ecosystems are already modified, improving the connections between habitats and the availability of resources (food and water) can help animals move more easily and populations persist.

And with regards to human activities, which generally caused stronger increases in movement, better managing disturbances such as hunting, recreation and tourism can help to minimise or avoid impacts on animal movement. This could include, for example, establishing a no-take zone in a marine protected area, or enforcing restrictions to activities during breeding periods.




Read more:
The buffel kerfuffle: how one species quietly destroys native wildlife and cultural sites in arid Australia


The Conversation


Tim Doherty, ARC DECRA Fellow, University of Sydney; Don Driscoll, Professor in Terrestrial Ecology, Deakin University, and Graeme Hays, Professor of Marine Science, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

It’s not too late to save them: 5 ways to improve the government’s plan to protect threatened wildlife



Numbats are among 20 mammals on the federal government’s priority list.
Shutterstock

Euan Ritchie, Deakin University; Ayesha Tulloch, University of Sydney; Don Driscoll, Deakin University; Megan C Evans, UNSW, and Tim Doherty, University of Sydney

Australia’s Threatened Species Strategy — a five-year plan for protecting our imperilled species and ecosystems — fizzled to an end last year. A new 10-year plan is being developed to take its place, likely from March.

It comes as Australia’s list of threatened species continues to grow. Relatively recent extinctions, such as the Christmas Island forest skink, Bramble Cay melomys and smooth handfish, add to an already heavy toll.

Red handfish (Thymichthys politus), cousin of the recently extinct smooth handfish, are critically endangered. They’re small, bottom-dwelling fish that tend to ‘walk’ on their pectoral and pelvic fins rather than swim.
CSIRO Science Image, CC BY-SA

Now, more than ever, Australia’s remarkable species and environments need strong and effective policies to strengthen their protection and boost their recovery.

So as we settle into the new year, let’s reflect on what’s worked and what must urgently be improved upon, to turn around Australia’s extinction crisis.




Read more:
Let there be no doubt: blame for our failing environment laws lies squarely at the feet of government


How effective was the first Threatened Species Strategy?

The Threatened Species Strategy is a key guiding document for biodiversity conservation at the national level. It identifies 70 priority species for conservation, made up of 20 birds, 20 mammals and 30 plants, such as the plains-wanderer, malleefowl, eastern quoll, greater bilby, black grevillea and Kakadu hibiscus.

These were considered among the most urgent in need of assistance of the more than 1,800 threatened species in Australia.

The strategy also identifies targets such as numbers of feral cats to be culled, and partnerships across industry, academia and government key to making the strategy successful.

The original strategy (2015-20) was eagerly welcomed for putting the national spotlight on threatened species conservation. It has certainly helped raise awareness of its priority species.

However, there’s little evidence the strategy has had a significant impact on threatened species conservation to date.

The midterm report in 2019 found only 35% of the priority species (14 in total) had improving trajectories compared to before the strategy (pre-2015). This number included six species — such as the brush-tailed rabbit-rat and western ringtail possum — that were still declining, but just at a slower rate.

Threatened Species Index trends for mammals (left) and birds (right) from 2000 to 2017. The index and y axes show the average change in populations (not actual population numbers) through time.
The Theatened Species Recovery Hub, Author provided

On average, the trends of threatened mammal and bird populations across Australia are not increasing.

Other targets, such as killing two million feral cats by 2020, were not explicitly linked to measurable conservation outcomes, such as an increase in populations of threatened native animals. Because of this, it’s difficult to judge their success.




Read more:
Feral cat cull: why the 2 million target is on scientifically shaky ground


What needs to change?

The previous strategy focused very heavily on feral cats as a threat and less so on other important and potentially compounding threats, particularly habitat destruction and degradation.

Targets from the first Threatened Species Strategy.
Department of Agriculture, Water and the Environment

For instance, land clearing has contributed to a similar number of extinctions in Australia (62 species) as introduced animals such as feral cats (64).

In fact, 2018 research found agricultural activities affect at least 73% of invertebrates, 82% of birds, 69% of amphibians and 73% of mammals listed as threatened in Australia. Urban development and climate change threaten up to 33% and 56% of threatened species, respectively.




Read more:
The buffel kerfuffle: how one species quietly destroys native wildlife and cultural sites in arid Australia


Other important threats to native Australian species include pollution, feral herbivores (such as horses and goats), very frequent or hot bushfires and weeds. Buffel grass was recently identified as a major emerging threat to Australia’s biodiversity, with the risk being as high as the threat posed by cats and foxes.

Five vital improvements

We made a submission to the Morrison government when the Threatened Species Strategy was under review. Below, we detail our key recommendations.

1. A holistic and evidence-based approach encompassing the full range of threats

This includes reducing rates of land clearing — a major and ongoing issue, but largely overlooked in the previous strategy.

A Leadbeater's possum peers out from behind a tree trunk.
Leadbeater’s possums are critically endangered. Their biggest threat is the destruction of hollow-bearing trees.
Shutterstock

2. Formal prioritisation of focal species, threats and actions

The previous strategy focused heavily on a small subset of the more than 1,800 threatened species and ecosystems in Australia. It mostly disregarded frog, reptile, fish and invertebrate species also threatened with extinction.

To reduce bias towards primarily “charismatic” species, the federal government should use an evidence-based prioritisation approach, known as “decision science”, like they do in New South Wales, New Zealand and Canada. This would ensure funds are spent on the most feasible and beneficial recovery efforts.

3. Targets linked to clear and measurable conservation outcomes

Some targets in the first Threatened Species Strategy were difficult to measure, not explicitly linked to conservation outcomes, or weak. Targets need to be more specific.

For example, a target to “improve the trajectory” of threatened species could be achieved if extinction is occurring at a slightly slower rate. Alternatively, a target to “improve the conservation status” of a species is achieved if new assessments rate it as “vulnerable” rather than “endangered”.

The ant plant (Myrmecodia beccarii) is one of the 30 plants on the federal government’s list of priority species. It is an ‘epiphyte’ (grows on other plants), and is threatened by habitat loss, invasive weeds, and removal by plant and butterfly collectors.
Dave Kimble/Wikimedia, CC BY-SA

4. Significant financial investment from government

Investing in conservation reduces biodiversity loss. A 2019 study found Australia’s listed threatened species could be recovered for about A$1.7 billion per year. This money could be raised by removing harmful subsidies that directly threaten biodiversity, such as those to industries emitting large volumes of greenhouse gases.

The first strategy featured a call for co-investment from industry. But this failed to attract much private sector interest, meaning many important projects aimed at conserving species did not proceed.

5. Government leadership, coordination and policy alignment

The Threatened Species Strategy should be aligned with Australia’s international obligations such as the United Nation’s Sustainable Development Goals and the federal Environment Protection and Biodiversity Conservation Act 1999 (which is also currently being reviewed). This will help foster a more coherent and efficient national approach to threatened species conservation.

The biggest threat to the critically endangered swift parrot is the clearing of their foraging and breeding habitat.
Shutterstock

There are also incredible opportunities to better align threatened species conservation with policies and investment in climate change mitigation and sustainable agriculture.

The benefits of investing heavily in wildlife reach beyond preventing extinctions. It would generate many jobs, including in regional and Indigenous communities.

Protecting our natural heritage is an investment, not a cost. Now is the time to seize this opportunity.




Read more:
Scientists re-counted Australia’s extinct species, and the result is devastating


The Conversation


Euan Ritchie, Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University; Ayesha Tulloch, DECRA Research Fellow, University of Sydney; Don Driscoll, Professor in Terrestrial Ecology, Deakin University; Megan C Evans, Lecturer and ARC DECRA Fellow, UNSW, and Tim Doherty, ARC DECRA Fellow, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Photos from the field: zooming in on Australia’s hidden world of exquisite mites, snails and beetles



Dragon springtails (pictured) are widely distributed in forests of eastern Australia — yet they’re still largely unknown to science.
Nick Porch, Author provided

Nick Porch, Deakin University

Environmental scientists see flora, fauna and phenomena the rest of us rarely do. In this series, we’ve invited them to share their unique photos from the field.


Which animals are quintessentially Australian? Koalas and kangaroos, emus, tiger snakes and green tree frogs, echidnas and eastern rosellas, perhaps. And let’s not forget common wombats.

Inevitably, most lists will be biased to the more conspicuous mammals and birds, hold fewer reptiles and frogs, and likely lack invertebrates — animals without a backbone or bony skeleton — altogether.

I’m an invertophile, fascinated by our rich terrestrial invertebrate fauna, so my list will be different. I’m enchanted by stunning dragon springtails, by cryptic little Tasmanitachoides beetles, and by the poorly known allothyrid mites, among thousands of others.

Australia’s terrestrial invertebrate multitude contains several hundred thousand uniquely Australian organisms. Most remain poorly known.

To preserve our biodiversity, we first must ask: “which species live where?”. For our invertebrates, we are a long way from knowing even this.

The Black Summer toll

Last year, a team of scientists estimated that the Australian 2019-2020 bushfires killed, injured or displaced three billion animals. That was a lot. But it was also a woefully inadequate estimate, because it only accounted for mammals, reptiles, birds and frogs.

Hidden from view, many trillions more invertebrates burned or were displaced by the fires. And yes, invertebrates are animals too.

A mite from the family Bdellidae (on the right) has captured a springtail, and is using its piercing mouthparts to suck it dry. Mites and springtails are among the most abundant animals on the planet.
Nick Porch, Author provided

Admittedly, it’s hard to come to terms with invertebrates because they’re often hard to find and difficult to identify. Most species are inconspicuous, even if they belong to incredibly abundant groups, such as mites and springtails, which can occur in numbers exceeding 10,000 per square metre.

Most invertebrates are poorly known because there are so many species and so few people working on them. In fact, it’s likely only a quarter to one-third of Australia’s terrestrial invertebrate fauna is formally described (have a recognised scientific name).

A translucent land snail
Meredithina dandenongensis, a species from the wet forests of Victoria. It can be found during the day under rotting logs. The land snail family Charopidae contains hundreds of species across wetter parts of southern and eastern Australia.
Nick Porch, Author provided

One of the problems invertebrates have, in terms of attracting attention, is that many are not easily seen with the naked eye.

Macrophotography can magnify these wonders for a view into a world most of us are completely unfamiliar with. Even then, it often will be hard to know what we see. Everyone will recognise a kangaroo, but who can identify an allothyrid mite?

The photo below shows an undescribed species of mite from the family Allothyridae, from Mount Donna Buang in Victoria. The mite family Allothyridae has three described Australian species, and dozens more awaiting description.

An undescribed Allothyridae species. Just one of the many species in this group waiting to be studied.
Nick Porch, Author provided

This collage shows a selection of mites found in the forests of southeastern Australia. It’s likely many of the species shown here are unknown to science.

Mites are a very ancient and diverse group. They can be found abundantly in most terrestrial habitats but are rarely seen because most are several millimetres long or smaller.
Nick Porch, Author provided

A deeply ancient lineage

Animal ecologists, most of whom work on vertebrates, often joke that I “study the ‘food’, haha…”. They think they’re funny, but this reflects a deep seated bias — one extending from scientists to the wider public. This limits the development of a comprehensive understanding of biodiversity that has flow-on effects for conservation more broadly.

It’s true: invertebrates are food for larger animals. But their vital role in maintaining Australia’s ecosystems doesn’t end there.

Every species has an evolutionary history, a particular habitat, a set of behaviours reflecting that history, and a role to play in the ecosystem. And many terrestrial invertebrates belong to especially ancient lineages that record the deep history of Australia’s past.

The moss bug family Peloridiidae, for example, dates back more than 150 million years. For context, the kangaroo family (Macropodidae) is likely 15-25 million years old.

Their history is reflected in the breakup of the ancient supercontinent, Gondwana. In fact, Australian species of moss bugs are more closely related to South American species than to those from nearby New Zealand.

A bronze-coloured beetle with delicate, translucent wings
Chasoke belongs to the beetle family Staphylinidae, which is currently considered the largest family of organisms on Earth, with more than 60,000 scientifically described species. Mt. Donna Buang, Victoria.
Nick Porch, Author provided

This is a common pattern in terrestrial invertebrate groups. It reflects how the New Zealand plate separated from the remainder of Gondwana about 80 million years ago, while the Australian plate remained connected to South America via Antarctica.

Similar stories can be told from across the invertebrate spectrum. The photo below shows a few examples of these relics from Gondwana.

Peloridiid bugs — such as Hemiodoecus leai China, 1924 (top left) — are restricted to the wettest forests where they feed on moss. Top right: A new species of Acropsopilio (Acropsopilionidae) harvestman from the Dandenong Ranges. Bottom left: a new velvet worm from the Otway Ranges. Bottom right: Tasmanitachoides hobarti from Lake St Clair in central Tasmania.
Nick Porch, Author provided

Their fascinating evolution

Overprinting this deep history are the changes that occurred in Australia, especially the drying of the continent since the middle Miocene, about 12-16 million years ago.

This continent-wide drying fragmented wet forests that covered much of the continent, resulting in the restriction of many invertebrate groups to pockets of wetter habitat, especially along the Great Dividing Range and in southwestern Australia.




Read more:
Trapdoor spider species that stay local put themselves at risk


A consequence of this was the evolution in isolation of many “short-range endemic” species.

A short-range endemic species means their geographic distribution is less than 10,000 square kilometres. A short-range endemic mammal you might be familiar with is Leadbeater’s possum, restricted to the wet forests of the Victorian Central Highlands.

A long, brown and orange thrips with six legs.
This is Idolothrips spectrum, the largest thrips in the world. It’s called the giant thrips, even though it’s less than 10mm long. Dandenong Ranges, Victoria.
Nick Porch, Author provided

But short-range endemism is much more common in invertebrates than other organisms. This is because many invertebrates are poor dispersers: they don’t move between habitat patches easily. They may also maintain viable populations in small areas of suitable habitat, and are frequently adapted to very specific habitats.

Take Tropidotrechus, pictured below, a genus of beetles mostly restricted to the same region as Leadbeater’s possum. They, however, divide the landscape at a much finer scale because they’re restricted to deep leaf litter in cool, wet, forest gullies.

As Australia dried, populations of Tropidotrechus became isolated in small patches of upland habitat, evolving into at least seven species across the ranges to the east of Melbourne.

Tropidotrechus victoriae, Victoria’s unofficial beetle emblem (left). Related described and undescribed species are found in the nearby Central Highlands and South Gippsland ranges (right)
Nick Porch, Author provided

Discoveries waiting to happen

The trouble with knowing so little about Australia’s extraordinary number of tiny, often locally unique invertebrates, is that we then massively underestimate how many of them are under threat, or have been badly hit by events like the 2019-2020 fires.

If we wish to conserve biodiversity widely, rather than only the larger charismatic wildlife, then enhancing our knowledge of our short-range species should be a high priority.

One shiny green beetle on top of another
You don’t necessarily need specialist equipment to take pictures of our fascinating invertebrates. This is a phone picture of mating Repsimus scarab beetles (relatives to the Christmas beetles). It was taken at Bemboka in NSW, which burnt during the 2019-2020 fires.
Nick Porch, Author provided

We’ve only just scratched the surface of Australia’s wonderful invertebrate fauna, so there are enough discoveries for everyone.

You can join iNaturalist, a citizen science initiative that lets you upload images and identify your discoveries. Perhaps you’ll discover something new — and a scientist just might name it after you.




Read more:
Want to teach kids about nature? Insects can help


The Conversation


Nick Porch, Senior Lecturer in Environmental Earth Science, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Torpor: a neat survival trick once thought rare in Australian animals is actually widespread



Shutterstock

Chris Wacker, University of New England

Life is hard for small animals in the wild, but they have many solutions to the challenges of their environment. One of the most fascinating of these strategies is torpor. Not, to be confused with sleep or Sunday afternoon lethargy, torpor is a complex response to the costs of living.

To enter torpor, an animal decreases its metabolism, reducing its energy requirements. A torpid animal will often be curled in a tight ball in its nest and look like it’s sleeping.

Once thought to occur only in birds and mammals in the Northern Hemisphere where winters are more pronounced, we now know torpor is widespread in small Australian mammals, and has also been observed in many small Australian bird species.

An echidna in the bush.
Echidnas use torpor to save energy.
Shutterstock



Read more:
Animal response to a bushfire is astounding. These are the tricks they use to survive


Masters of metabolism

Birds and mammals are endotherms and can maintain a high and constant body temperature independent of the environmental temperature, thanks to their high metabolic rate. This allows them to be active across a wide range of environments.

The downside? This high metabolic rate requires a lot of food to fuel it. By reducing the metabolism in a very controlled manner and entering torpor, an animal can live on less energy.

With a lower metabolic rate, the animal’s body temperature decreases — sometimes by as much as 30°C. How low it goes can depend on the extent of the metabolic reduction and the temperature of animal’s immediate environment. The reduced body temperature further lowers the metabolic rate.

Slowing down to survive

Torpor is an extremely effective survival strategy for small endotherms. For example, small mammals have been observed using torpor after bushfires.

Take the brown antechinus, for example. When other animals have fled, this 30g marsupial hides in refuges, waits out the fire, then uses torpor to cope with reduced food availability until local vegetation and invertebrate populations recover.

A brown antechinus on a tree.
The brown antechinus uses torpor to cope with reduced food availability after bushfire.
Shutterstock

Many pregnant and lactating bats and marsupials, and even the echidna, synchronise torpor with reproduction to cope with the energetic costs of mating, pregnancy or lactation.

There are two main types of torpor: daily torpor and hibernation.

Daily torpor

Animals that use daily torpor can do so for approximately 3-6 hours a day as needed.

Daily torpor is common in, but not exclusive to, endotherms living in arid areas, such as the fat-tailed dunnart. This species is a carnivorous marsupial and has a diet of insects and other invertebrates, which may be in short supply in winter.

A fat-tailed dunnart.
When finding enough food is difficult, the fat-tailed dunnart uses torpor.
Shutterstock

Weighing approximately 12 grams as adults, the fat-tailed dunnart may need to eat its body weight in food each day. When finding enough food is difficult, it uses torpor; foraging in the early part of the night then entering torpor in the early morning. Fat-tailed dunnarts reduce their metabolic rate, and subsequently their body temperature, from 35 °C to approximately 15°C, or the temperature of their underground nest.

Hibernation

Animals that hibernate lower their metabolic rate further and have longer torpor bouts than those that use daily torpor. An example of an Australian hibernator is the eastern pygmy possum, a 40g marsupial found in south eastern Australia that hibernates regularly, decreasing its body temperature from approximately 35 °C to as low as 5°C.

When active, this species can survive for less than half a day on 1g of fat, but when hibernating, it can survive for two weeks.

A torpid eastern pygmy possum. Note the curled posture.
Photo credit: Chris Wacker, Author provided

If it weren’t for the periodic increases in metabolic rate and body temperature, a hibernating pygmy possum could live for well over three months on 1g of fat. However, the exact purpose of these periodic arousals is unknown.

The metabolic rate during pygmy possum hibernation is just 2% of the minimum metabolic rate endotherms at a normal body temperature need to live. This baseline metabolism is called basal metabolic rate.

An American black bear
Black bears can’t hibernate with a lower body temperature.
Shutterstock

Compare this with a well-known hibernator, the American black bear.

At approximately 120kg, its metabolic rate during hibernation decreases to 25% of the basal metabolic rate, and the body temperature decreases from approximately 37°C to 30 °C. Black bears can’t hibernate with a lower body temperature, perhaps because it would take them a very long time to reduce it, and then cost them too much energy to rewarm at the end of hibernation.

Can humans do it?

The question people often ask about torpor, is “can humans do it?” Interestingly, some small primates have been observed using torpor. While it is technically possible to induce torpor in humans chemically, torpor is a very complex physiological process, and there are many aspects of it scientists still don’t fully understand.

A gray mouse lemur in Madagascar.
The grey mouse lemur in Madagascar is among the primates that uses torpor.
Shutterstock

Coping with climate change

Australia’s wildlife have evolved strategies to cope with life in an often-harsh environment affected by multiple year-long droughts, landscape-altering floods, and widespread bushfires.

Climate change is predicted to increase the duration, frequency and severity of these events, and in conjunction with landscape clearing, animals are facing new environmental and resource challenges.

While animals that use flexible, daily torpor may be well-suited to cope during these times, at least in the short term, hibernators that depend on long winters are most at risk.




Read more:
Summer bushfires: how are the plant and animal survivors 6 months on? We mapped their recovery


The Conversation


Chris Wacker, Postdoctoral Research Fellow – School of Environmental and Rural Science, University of New England

This article is republished from The Conversation under a Creative Commons license. Read the original article.

10 million animals are hit on our roads each year. Here’s how you can help them (and steer clear of them) these holidays



This is Noojee, a joey koala who was rehabilitated in Healesville Sanctuary after being hit by a car.
Healesville Sanctuary, Author provided

Marissa Parrott, University of Melbourne

Last month I came across a heartbreaking sight: a group of people standing around a young female kangaroo with horrific injuries. She appeared to have been hit by a car and had dragged herself away, only to collapse into our local creek.

A police officer had gently lifted her out to the bank where her injuries became apparent. A shattered leg, broken arm, and bruising indicating massive internal trauma. She was panting – exhausted and in pain. Fortunately, she had no young joeys in her pouch.

I offered my help as a wildlife specialist. This was a tragic, but common scenario. An estimated 10 million animals are hit on Australian roads every year.

Australia’s road toll is so high it threatens whole species. Road mortality is the second biggest killer of endangered Tasmanian devils with around 350 killed every year, and the biggest cause of death of adult endangered cassowaries in Queensland.

Noojee all grown up at Healesville Sanctuary, now with a crooked face.
Noojee, all grown up at Healesville Sanctuary, whose face healed a little crookedly.
Healesville Sanctuary, Author provided

The holiday season is upon us and people are now able to travel to see family and friends again. This means the unusually-quiet roads during COVID-19 lockdown — which may have lulled wildlife into a false sense of security — are frighteningly busy. So here’s how you can be wildlife-aware this December.

Who is hurt?

As Australia’s population expands, wildlife are pushed into smaller areas, with more roads criss-crossing their habitats. The most visible victims of road expansion are larger mammals such as possums, wombats, kangaroos and koalas. However, millions of smaller animals including echidnas, birds, reptiles and frogs are also injured or killed each year on our roads.

The vast majority of insurance claims for animal collisions involve kangaroos, with wallabies and wombats the next most frequent. Smaller animals often go unreported or unnoticed.

Humans are also at risk in these collisions. Every year people crash their vehicles hitting, or trying to avoid hitting, animals on the road, with 5% of fatal accidents caused by collisions with animals. Of those, 42% tried to swerve to avoid the animal. Those who do hit wildlife may also suffer serious injuries, with motorcyclists particularly at risk.

A dead kangaroo on the side of the road
A familiar sight to many people hitting country roads this holiday season.
Shutterstock

Bracing for a new wave of admissions

There are a number of aspects that increase the wildlife road toll: better road conditions leading to faster driving, young animals dispersing for the first time, higher movements during drought or after fire as animals seek food, water or shelter, breeding season movements in spring-summer, and longer periods of darkness over winter.




Read more:
How you can help – not harm – wild animals recovering from bushfires


Some animals may be hit trying to help a fallen friend or juvenile, as I have seen in galahs and ducks. Others may be hit while feeding on carcasses on the road, like wedge-tailed eagles, owls and Tasmanian devils.

Now, as the holiday season begins after months of reduced travel, wildlife hospitals are braced for a new wave of admissions.

View from inside a bus of an echidna crossing the road
When smaller animals like echidnas are hit, it often goes unreported or unnoticed.
Shutterstock

How do you avoid a crash?

Be aware that large marsupials such as wombats, wallabies and kangaroos are most active at dawn and dusk. However, many birds, lizards, snakes and echidnas move during the day. At night, others like frogs, possums, quolls and devils start to roam.

Wildlife warning signs are only installed in high danger areas, so always pay attention to them. Try to limit your travel between sunset and sunrise, especially near forested or high wildlife areas. If you must drive, stay within the safe speed limit and slow down in areas with wildlife.

Use high beam headlights when safe and watch the sides of the road carefully — animals can often be seen ahead before they flee in front of a vehicle. As you approach the animal, return to normal headlights to avoid dazzling them or causing erratic behaviour.

Tasmanian devil road sign
Many marsupials are active between dawn and dusk, be sure to drive slowly.
Marissa Parrott, Author provided

What to do if you see an injured animal?

First, always ensure you are safe. Stop in an easily seen location away from traffic, use your hazard lights and if possible wear bright clothing. Remember, injured animals may be frightened and in pain, and some could be dangerous if approached.

In emergency cases, where the animal’s injuries are obvious, some can be carefully caught and wrapped in a towel, then placed in a well-ventilated, dark and secure box for quiet transport to wildlife veterinary hospitals for care. The links above give tips on how to handle some wildlife emergency cases where needed.

I always travel with towels, pillow cases and gloves in my car in case I find an animal in need. You can check animals found by roads for injuries, and surviving young in pouches.

But it’s important you do not approach potentially dangerous animals like snakes, monitor lizards (goannas), bats (flying-foxes or microbats), large macropods (kangaroos or wallabies) or raptors (eagles or hawks). Instead, call and wait for trained and vaccinated rescuers. Wildlife Victoria, for example, assisted 6,875 animals hit by vehicles in 2019 alone.

A long-necked turtle peeking over the water
This is Toby, a common long-necked turtle, who had a fractured shell after being hit by a car. He was treated by vets and released back into the bush.
Healesville Sanctuary, Author provided

Innovation for conservation

In Tasmania, where an estimated 500,000 animals are hit on roads every year, a Roadkill Tas App is identifying road kill hot spots to assist research and conservation efforts.

In high kill areas, virtual road fences are being trialled. These posts are activated by car headlights at night and produce sound and light to frighten animals away from the road before a vehicle arrives.




Read more:
Mysterious poles make road crossing easier for high flying mammals


Other areas use tunnels under the road, or overpasses to help wildlife cross safely.

If you know of dangerous areas for wildlife, contact your council to see if warning signs or ways to help wildlife can be installed.

Cassowaries on a road
Collisions on the road is the biggest cause of death of adult Cassowaries in Queensland.
Shutterstock

In the case of my poor little injured kangaroo last month, I worked with the police to make the difficult, but only, decision possible with such traumatic and untreatable injuries. As she was put out of her misery, I thought of all the wildlife hit by cars and left to die.

We can all do our part. Slow down, watch for wildlife, and avoid travel between dawn and dusk. Remind friends, family and tourists to watch for our wildlife. If you do hit an animal, or see one on the road, please stop to help and check pouches if safe. A tiny life may be waiting for your help these holidays.


If you see an injured animal on the road, call Wildlife Rescue Australia on 1300 596 457, or see the RSPCA injured wildlife site for specific state and territory numbers.

Find more tips here for helping local wildlife in need this summer from Zoos Victoria.The Conversation

Marissa Parrott, Reproductive Biologist, Wildlife Conservation & Science, Zoos Victoria, and Honorary Research Associate, BioSciences, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Fences have big effects on land and wildlife around the world that are rarely measured



Australia’s dingo fences, built to protect livestock from wild dogs, stretch for thousands of kilometers.
Marian Deschain/Wikimedia, CC BY-SA

Alex McInturff, University of California Santa Barbara; Christine Wilkinson, University of California, Berkeley, and Wenjing Xu, University of California, Berkeley

What is the most common form of human infrastructure in the world? It may well be the fence. Recent estimates suggest that the total length of all fencing around the globe is 10 times greater than the total length of roads. If our planet’s fences were stretched end to end, they would likely bridge the distance from Earth to the Sun multiple times.

On every continent, from cities to rural areas and from ancient to modern times, humans have built fences. But we know almost nothing about their ecological effects. Border fences are often in the news, but other fences are so ubiquitous that they disappear into the landscape, becoming scenery rather than subject.

In a recently published study, our team sought to change this situation by offering a set of findings, frameworks and questions that can form the basis of a new discipline: fence ecology. By compiling studies from ecosystems around the world, our research shows that fences produce a complex range of ecological effects.

Some of them influence small-scale processes like the building of spider webs. Others have much broader effects, such as hastening the collapse of Kenya’s Mara ecosystem. Our findings reveal a world that has been utterly reorganized by a rapidly growing latticework of fences.

Conservationists and scientists have raised concerns about the ecological effects of the U.S.-Mexico border wall, most of which is essentially a fence.

Connecting the dots

If fences seem like an odd thing for ecologists to study, consider that until recently no one thought much about how roads affected the places around them. Then, in a burst of research in the 1990s, scientists showed that roads – which also have been part of human civilization for millennia – had narrow footprints but produced enormous environmental effects.

For example, roads can destroy or fragment habitats that wild species rely on to survive. They also can promote air and water pollution and vehicle collisions with wildlife. This work generated a new scientific discipline, road ecology, that offers unique insights into the startling extent of humanity’s reach.

Our research team became interested in fences by watching animals. In California, Kenya, China and Mongolia, we had all observed animals behaving oddly around fences – gazelles taking long detours around them, for example, or predators following “highways” along fence lines.

We reviewed a large body of academic literature looking for explanations. There were many studies of individual species, but each of them told us only a little on its own. Research had not yet connected the dots between many disparate findings. By linking all these studies together, we uncovered important new discoveries about our fenced world.

Vintage ad for barbed wire.
Early advertisement for barbed wire fencing, 1880-1889. The advent of barbed wire dramatically changed ranching and land use in the American West by ending the open range system.
Kansas Historical Society, CC BY-ND

Remaking ecosystems

Perhaps the most striking pattern we found was that fences rarely are unambiguously good or bad for an ecosystem. Instead, they have myriad ecological effects that produce winners and losers, helping to dictate the rules of the ecosystems where they occur.

Even “good” fences that are designed to protect threatened species or restore sensitive habitats can still fragment and isolate ecosystems. For example, fences constructed in Botswana to prevent disease transmission between wildlife and livestock have stopped migrating wildebeests in their tracks, producing haunting images of injured and dead animals strewn along fencelines.

Enclosing an area to protect one species may injure or kill others, or create entry pathways for invasive species.

One finding that we believe is critical is that for every winner, fences typically produce multiple losers. As a result, they can create ecological “no man’s lands” where only species and ecosystems with a narrow range of traits can survive and thrive.

Altering regions and continents

Examples from around the world demonstrate fences’ powerful and often unintended consequences. The U.S.-Mexico border wall – most of which fits our definition of a fence – has genetically isolated populations of large mammals such as bighorn sheep, leading to population declines and genetic isolation. It has even had surprising effects on birds, like ferruginous pygmy owls, that fly low to the ground.

Australia’s dingo fences, built to protect livestock from the nation’s iconic canines, are among the world’s longest man-made structures, stretching thousands of kilometers each. These fences have started ecological chain reactions called trophic cascades that have affected an entire continent’s ecology.

The absence of dingoes, a top predator, from one side of the fence means that populations of prey species like kangaroos can explode, causing categorical shifts in plant composition and even depleting the soil of nutrients. On either side of the fence there now are two distinct “ecological universes.”

Our review shows that fences affect ecosystems at every scale, leading to cascades of change that may, in the worst cases, culminate in what some conservation biologists have described as total “ecological meltdown.” But this peril often is overlooked.

Map showing the density of fencing in the western U.S.
The authors assembled a conservative data set of potential fence lines across the U.S. West. They calculated the nearest distance to any given fence to be less than 31 miles (50 kilometers), with a mean of about 2 miles (3.1 kilometers).
McInturff et al,. 2020, CC BY-ND

To demonstrate this point, we looked more closely at the western U.S., which is known for huge open spaces but also is the homeland of barbed wire fencing. Our analysis shows that vast areas viewed by researchers as relatively untrodden by the human footprint are silently entangled in dense networks of fences.

Do less harm

Fences clearly are here to stay. As fence ecology develops into a discipline, its practitioners should consider the complex roles fences play in human social, economic and political systems. Even now, however, there is enough evidence to identify actions that could reduce their harmful impacts.

There are many ways to change fence design and construction without affecting their functionality. For example, in Wyoming and Montana, federal land managers have experimented with wildlife-friendly designs that allow species like pronghorn antelope to pass through fences with fewer obstacles and injuries. This kind of modification shows great promise for wildlife and may produce broader ecological benefits.

Another option is aligning fences along natural ecological boundaries, like watercourses or topographical features. This approach can help minimize their effects on ecosystems at low cost. And land agencies or nonprofit organizations could offer incentives for land owners to remove fences that are derelict and no longer serve a purpose.

[Deep knowledge, daily. Sign up for The Conversation’s newsletter.]

Nonetheless, once a fence is built its effects are long lasting. Even after removal, “ghost fences” can live on, with species continuing to behave as if a fence were still present for generations.

Knowing this, we believe that policymakers and landowners should be more cautious about installing fences in the first place. Instead of considering only a fence’s short-term purpose and the landscape nearby, we would like to see people view a new fence as yet another permanent link in a chain encircling the planet many times over.The Conversation

Alex McInturff, Postdoctoral Researcher, University of California Santa Barbara; Christine Wilkinson, Ph.D. Candidate in Environmental Science, Policy and Management, University of California, Berkeley, and Wenjing Xu, PhD Candidate in Environmental Science, Policy and Management, University of California, Berkeley

This article is republished from The Conversation under a Creative Commons license. Read the original article.

3 billion animals were in the bushfires’ path. Here’s what the royal commission said (and should’ve said) about them


Ashleigh Best, University of Melbourne; Christine Parker, University of Melbourne, and Lee Godden, University of Melbourne

The Black Summer bushfires were devastating for wildlife, with an estimated three billion wild animals killed, injured or displaced. This staggering figure does not include the tens of thousands of farm animals who also perished.

The bushfire royal commission’s final report, released on October 30, recognised the gravity of the fires’ extraordinary toll on animals.




Read more:
Click through the tragic stories of 119 species still struggling after Black Summer in this interactive (and how to help)


It recommended governments improve wildlife rescue arrangements, develop better systems for understanding biodiversity and clarify evacuation options for domestic animals.

While these changes are welcome and necessary, they’re not sufficient. Minimising such catastrophic impacts on wildlife and livestock also means reducing their exposure to these hazards in the first place. And unless we develop more proactive strategies to protect threatened species from disasters, they’ll only become more imperilled.

What the royal commission recommended

The royal commission recognised the need for wildlife rescuers to have swift and safe access to fire grounds.

In the immediate aftermath of the bushfires, some emergency services personnel were confused about the roles and responsibilities of wildlife rescuers. This caused delays in rescue operations.

To address this issue, the royal commission sensibly suggested all state and territory governments integrate wildlife rescue functions into their general disaster planning frameworks. This would improve coordination between different response agencies.




Read more:
The bushfire royal commission has made a clarion call for change. Now we need politics to follow


Another issue raised by the commission was that Australia does not have a comprehensive, central source of information about its native flora and fauna. This is, in part, because species listing processes are fragmented across different jurisdictions.

For example, a marsupial, the white-footed dunnart, is listed as vulnerable in NSW, but is not on the federal government’s list of threatened species.

To better manage and protect wild animals, governments need more complete information on, for example, their range and population, and how climate change threatens them.

As a result, the royal commission recommended governments collect and share more accurate information so disaster response and recovery efforts for wildlife could be more targeted, timely and effective.

A wildlife rescuer holds a koala with burnt feet in a burnt forest
Adelaide wildlife rescuer Simon Adamczyk takes a koala to safety on Kangaroo Island.
AAP Image/David Mariuz

Helping animals help themselves

While promising, the measures listed in the royal commission’s final report will only tweak a management system for wildlife already under stress. Current legal frameworks for protecting threatened species are reactive. By the time governments intervene, species have often already reached a turning point.

Governments must act to allow wild animals the best possible chances of escaping and recovering on their own.

This means prioritising the protection and restoration of habitat that allows animals to get to safety. As a World Wildlife Fund report explains, an animal’s ability to flee the fires and find safe, unburnt habitat — such as mesic (moist) refuges in gullies or near waterways — directly influenced their chances of survival.




Read more:
Summer bushfires: how are the plant and animal survivors 6 months on? We mapped their recovery


Wildlife corridors also assist wild animals to survive and recover from disasters. These connect areas of habitat, providing fast moving species with safe routes along which they can flee from hazards.

And these corridors help slow moving species, such as koalas, to move across affected landscapes after fires. This prevents them from becoming isolated, and enables access to food and water.

Hazard reduction activities, such as removing dry vegetation that fuels fires, were also a focus for the royal commission. These can coexist with habitat conservation when undertaken in ecologically-sensitive ways.

As the commission recognised, Indigenous land and fire management practices are informed by intimate knowledge of plants, animals and landscapes. These practices should be integrated into habitat protection policies in consultation with First Nations land managers.

The commission also suggested natural hazards, such as fire, be counted as a “key threatening process” under national environment law. But it should be further amended to protect vulnerable species under threat from future stressors, such as disasters.




Read more:
Let there be no doubt: blame for our failing environment laws lies squarely at the feet of government


Governments also need to provide more funding to monitor compliance with this law. Another new World Wildlife Fund report warns that unless it is properly enforced, a further 37 million native animals could be displaced or killed as a result of habitat destruction this decade.

And, as we saw last summer, single bushfire events can push some populations much closer to extinction. For example, the fires destroyed a large portion of the already endangered glossy black-cockatoo’s remaining habitat.

What about pets and farm animals?

Pets and farm animals featured in the commission’s recommendations too.

During the bushfires, certain evacuation centres didn’t cater for these animals. This meant some evacuees chose not to use these facilities because they couldn’t take their animals with them.

To guide the community in future disasters, the commission said plans should clearly identify whether or not evacuation centres can accommodate people with animals.




Read more:
Seven ways to protect your pets in an emergency


Evacuation planning is crucial to effective disaster response. However, it is unfortunately not always feasible to move large groups of livestock off properties at short notice.

For this reason, governments should help landholders to mitigate the risks hazards pose to their herds and flocks. Researchers are already starting to do this by investigating the parts of properties that were burnt during the bushfires. This will help farmers identify the safest paddocks for their animals in future fire seasons.

Disasters are only expected to become more intense and extreme as the climate changes. And if we’re to give our pets, livestock and unique wildlife the best chance at surviving, it’s not enough only to have sound disaster response. Governments must preemptively address the underlying sources of animals’ vulnerability to hazards.




Read more:
How we plan for animals in emergencies


The Conversation


Ashleigh Best, PhD Candidate and Teaching Fellow, University of Melbourne; Christine Parker, Professor of Law, University of Melbourne, and Lee Godden, Director, Centre for Resources, Energy and Environmental Law, Melbourne Law School, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.