A hidden toll: Australia’s cats kill almost 650 million reptiles a year



File 20180625 152146 10y0h61.jpg?ixlib=rb 1.1
A feral cat snapped by a remote camera in the wild.
NT government, Author provided

John Woinarski, Charles Darwin University; Brett Murphy, Charles Darwin University; Chris Dickman, University of Sydney; Sarah Legge, Australian National University, and Tim Doherty, Deakin University

Cats take a hefty toll on Australia’s reptiles – killing an estimated 649 million of them every year, including threatened species – according to our new research published in the journal Wildlife Research.

This follows the earlier discovery that cats take a similarly huge chunk out of Australian bird populations. As we reported last year, more than a million Australian birds are killed by cats every day. Since their introduction to Australia, cats have also driven many native mammal species extinct.




Read more:
For whom the bell tolls: cats kill more than a million Australian birds every day


We collated information from about 100 previous local studies of cats’ diets across Australia. These studies involved teasing apart the contents of more than 10,000 samples of faeces or stomachs from cats collected as part of management programs.

We tallied the number of reptiles found in these samples, and then scaled it up to Australia’s estimated cat population of between 2.1 million and 6.3 million. We also collated information from museums and wildlife shelters on the various animals that had been brought in after being killed or injured by cats.

We calculate that an average feral cat kills 225 reptiles per year, so the total feral cat population kills 596 million reptiles per year. This tally will vary significantly from year to year, because the cat population in inland Australia fluctuates widely between drought and rainy years.

On the hunt.
NT government, Author provided

We also estimated that the average pet cat kills 14 reptiles per year. That means that Australia’s 3.9 million pet cats kill 53 million reptiles in total each year. However, there is much less firm evidence to quantify the impact of pet cats, mainly because it is much more straightforward to catch and autopsy feral cats to see what they have been eating, compared with pet cats.

Binge eaters

According to our study, cats have been known to kill 258 different Australian reptiles (snakes, lizards and turtles – but not crocodiles!), including 11 threatened species.

The cat autopsies revealed that some cats binge on reptiles, with many cases of individual cats having killed and consumed more than 20 individual lizards within the previous 24 hours. One cat’s stomach was found to contain no less than 40 lizards.

Cat stomach contents, including several reptile parts.
Arid Recovery, Author provided

Such intensive predation probably puts severe pressure on local populations of some reptile species. There is now substantial evidence that cats are a primary cause of the ongoing decline of some threatened Australian reptile species, such as the Great Desert Skink.

By our estimate, the average Australian feral cat kills four times more lizards than the average free-roaming cat in the United States (which kills 59 individuals per year). But there are many more such cats in the US (between 30 million and 80 million), so the total toll on reptiles is likely similar.




Read more:
The war on feral cats will need many different weapons


The conservation of the Australian reptile fauna has been accorded lower public profile than that of many other groups. However, a recent international program has nearly completed an assessment of the conservation status of every one of Australia’s roughly 1,000 lizard and snake species.

Our research provides yet more evidence of the harm that cats are wreaking on Australia’s native wildlife. It underlines the need for more effective and strategic control of Australia’s feral cats, and for more responsible ownership of pet cats.

Pet cats that are allowed to roam will kill reptiles, birds and other small animals. Preventing pet cats from roaming will help the cats live longer and healthier lives – not to mention saving the lives of wildlife.


The ConversationThe authors acknowledge the contribution of Russell Palmer, Glenn Edwards, Alex Nankivell, John Read and Dani Stokeld to this research.

John Woinarski, Professor (conservation biology), Charles Darwin University; Brett Murphy, Senior Research Fellow, Charles Darwin University; Chris Dickman, Professor in Terrestrial Ecology, University of Sydney; Sarah Legge, Associate Professor, Australian National University, and Tim Doherty, Research Fellow, Deakin University

This article was originally published on The Conversation. Read the original article.

Advertisements

Polar invasion: how plants and animals would colonise an ice-free Antarctica



Image 20150914 4680 8vs2vt.jpg?ixlib=rb 1.1

Tom Hart, Author provided

Peter Convey, British Antarctic Survey and Tom Hart, University of Oxford

Antarctica’s ice sheets could totally collapse if the world’s fossil fuels are burnt off, according to a recent climate change simulation. While we are unlikely to see such a dramatic event any time soon, we are already observing big changes and it’s worth considering what the worst case scenario might look like for the continent’s ecosystems. How long before Antarctica turns into grassy tundra?

For now, life thrives mostly at the very edge of the continent – it’s driven by the plankton-rich Southern Ocean and clustered around seasonally ice-free areas of coastal land. The interior might be sparsely inhabited, but the continent is not as barren as many think. There are around 110 native species of moss and two flowering plants, the Antarctic hairgrass and pearlwort. These plants have flourished along the relatively mild Antarctic Peninsula in recent decades. However they can’t go much further – they already occur at almost the most southern suitable ice-free ground.

With ice-caps and glaciers receding already in the Peninsula region, native land plants and animals are benefiting from more easily available liquid water. Already we are starting to see increased populations, greater areas occupied and faster growth rates, consequences only expected to increase – everything is currently limited by the extreme physical environment.

The world’s most southerly flower, the Antarctic hairgrass (Deschampsia Antarctica)
British Antarctic Survey, Author provided

It may eventually prove too warm for some native species, but the bigger issue in upcoming decades and centuries will be whether new and currently “non-native” species will arrive that are stronger competitors than the native organisms.

Antarctic invasions

Native polar species are inherently weak competitors, as they have evolved in an environment where surviving the cold, dry conditions is the overriding selective pressure rather than competition from other biological sources. If humans (or other wildlife expanding their range southwards) bring new competitors and diseases to Antarctica, that may pose a very grave risk to the existing biodiversity. Some native species would likely be pushed into the remaining more extreme regions where they can avoid competition and continue to rely on their inherent stress tolerance abilities.

Tom Hart with two million chinstrap penguins. Isolation has made Antarctic species vulnerable to introduced competition.
Richard White, Author provided

We usually split the process of natural colonisation – which applies even today in Antarctica – and that of movement of “alien” species by human agency. The best available data for the Antarctic region come from some sub-Antarctic islands, where it appears humans have been responsible for many more successful colonisations than nature. In fact, over the recent centuries of human contact with the region we have introduced 200-300 species compared to just two or three known natural colonisations.

Penguins, seals and flying seabirds move between islands and the Antarctic Peninsula, so there is potential for some natural colonisation. Vagrant birds are regularly observed across the sub-Antarctic and even along the Peninsula, some of which have colonised successfully (such as the starlings, redpolls and mallard ducks on Macquarie Island).

Migrants such as skuas and gulls, which spend time on land at both ends of their migration, could be important natural vectors of transfer for invertebrates, plant seeds and spores, and microbes into an ice-free Antarctica. Importantly, bird colonies also fertilise surrounding rock and soil with faeces, eggshells and carcasses. Plant and animal life flourishes near seabird colonies, encouraged by this enrichment.

What’s hitching a ride on this skua?
Tom Hart, Author provided

However it can be tough to predict what Antarctic melt would mean for individual species, never mind entire ecosystems. Take penguins, for instance – they have already survived previous inter-glacial retreats, but at reduced population sizes. This time round it is likely that Adélie and emperor penguins who are more dependent upon sea ice would decline, while less ice-dependent species such as gentoos and chinstraps might benefit. Indeed, there is already some evidence that emperors are struggling (although also that they may be adapting and learning to emigrate).

However the fact fish-eating gentoo penguins are increasing on the Peninsula while Adélies and chinstraps (both krill eaters) aren’t doing so well suggests prey availability can be more to blame than ice cover. Figuring out the impact of large-scale environmental change at ecosystem or food-web level is hard – it’s a complex process that will no doubt throw up some unexpected results.

This flightless midge comes from South Georgia but has been introduced further south.
British Antarctic Survey, Author provided

The sub-Antarctic islands are full of examples of such unexpected impacts. Pigs, dogs, cats, sheep, reindeer and rabbits have all been intentionally introduced in the past, with often devastating effects. Rats and mice were introduced to South Georgia and other islands accidentally by sealers and whalers, for instance, and have decimated seabird populations. A recent eradication campaign appears to have been successful and pipits, ducks and small seabirds are showing some immediate signs of recovery.

The removal of non-native cats from Macquarie and Marion Islands has similarly helped native burrowing seabirds, although responses in such ecosystems can be far more complex and unpredictable – the removal of cats from Macquarie also led to increase in the introduced rabbit population, and considerably increased damage to sensitive native vegetation.

Antarctic biodiversity is far more complex than widely assumed, with up to 15 distinct biogeographic regions that have been evolutionarily isolated for many millions of years. Humans present the greatest threat, not only of introducing new species, but also of moving “native” species between regions within Antarctica. This could be even more damaging, as these native species would already be pre-adapted to polar life.

Visitors to Antarctica are subject to increasingly strict biosecurity measures but accidental introductions continue to occur, often through food shipments for scientists. Changes in sea and land ice affect access to new areas, so we can only expect plant and invertebrate invasions to increase unless biosecurity becomes more effective.

The ConversationWhile cost issues may be raised, it is worth remembering that prevention will always be better – and cheaper – than subsequent control and eradication, even if such action is possible.

Peter Convey, Terrestrial Ecologist, British Antarctic Survey and Tom Hart, Penguinologist, University of Oxford

This article was originally published on The Conversation. Read the original article.

The future is fenced for Australian animals



File 20180530 120490 1mm1egn.jpg?ixlib=rb 1.1
Mala, also known as rufous hare-wallabies, will be protected behind an enormous cat-proof fence.
Donald Hobern/Flickr, CC BY-SA

Michael Bode, The University of Queensland

Many of Australia’s mammals spend their entire lives imprisoned, glimpsing the outside world through tall chain-link fences and high-voltage wires. There are dozens of these enclosures across Australia. Many are remote, standing alone in the endless expanse of inland Australia, but others are on the outskirts of our largest cities – Melbourne, Perth, Canberra.

Every year there are more of them, the imprisoned population growing, while the wild populations outside dwindle. These are Australia’s conservation fences.




Read more:
Let’s move the world’s longest fence to settle the dingo debate


The captives within our conservation fences are adorable – floppy-eared bilbies, tiny hare-wallabies, long-tongued numbats – and they all share an extreme susceptibility to introduced predators. At least 68 native mammal species cannot exist in the wild if either foxes or cats are present. Many of these species once numbered in the millions, ranging from the woodlands of Queensland to the deserts of Western Australia, but predation has driven them to the brink of extinction.

Fences offer these species a future in the wild, and conservation groups have risen to the challenge. Last week, the Australian Wildlife Conservancy completed a new cat-proof fence in their Newhaven Sanctuary, the largest conservation fence ever constructed.

Fences are extraordinarily successful

Make no mistake, these conservation fences work. Species that wilt at the sight of a fox, that have been exterminated from every corner of the Australian mainland, will explode in numbers behind fences. Along with offshore islands, inside these fences are the only places in Australia where these species can prosper – a few hundred square kilometres of safety, surrounded by 7.6 million lethal square kilometres.

Environmentalists have never particularly liked fences. Rather than hide behind walls, they repeatedly took the fight to the cats and foxes on the outside.

Their tactics have been diverse, innovative and brutal. Managers have rained bullets from helicopters and poison baits from planes. They have set cunning snares and traps, mimicked the smell and sound of their enemies, and have turned landscapes to ash with wildfire.

Nothing has worked for the most threatened marsupials. Some of the largest and most expensive management campaigns in Australian conservation history have ended in exhaustion and stalemate, and with a retreat back behind the fences.

Fences were once a source of vehement debate in conservation circles. Should they be permanent? Are fenced populations wild or captive? Should they contribute to species’ conservation status?

These arguments have effectively been abandoned. Scientific studies and painful experience has proven fences and offshore islands to be the only reliable method of protecting predator-threatened species http://www.wildliferesearchmanagement.com.au/Final%20Report_0609.pdf. In place of these debates, conservation organisations and governments have turned to more practical questions of fence height, electric wire voltage and skirt depth.

So now, on average, Australians are building a new fence every year, some of them truly enormous. The just-completed fence at Newhaven encloses a staggering 10,000 hectares of red sand and spinifex. By the time the project is complete, this fence will be home to 11 different threatened mammal species.

And Australia is not alone: around the world, from New Zealand to Hawaii to South Africa, an archipelago of fences is emerging from an ocean of predators. It is one of the great achievements of modern conservation and has already averted the extinction of critically endangered species. Although it’s much smaller than our network of protected areas, it offers refuge to species that are long-gone from our national parks and wilderness areas.

Red foxes have been extraordinarily successful in Australia.
Harley Kingston/Flickr, CC BY

A troubling pattern

However, in recent years a concerning pattern has begun to emerge. While the number and size of fences continue to increase, the number of new species being protected has stalled. In fact, the last five fences haven’t included any new species – they have only offered additional protection to species that were already protected behind existing fences https://www.nature.com/articles/s41559-017-0456-4.

As an example, the first two marsupials planned for introduction behind the Newhaven fence will be the mala (Lagorchestes hirsutus) and the burrowing bettong (Bettongia lesueur). These two species undeniably deserve more protection. Both are highly susceptible to foxes and cats and will derive tremendous benefit from the protection of this enormous fence. However, both species are already found elsewhere behind fences (four different fences for burrowing bettongs). Meanwhile, yet-to-be-published research from the National Environmental Science Program has found 41 other species that are desperately vulnerable to introduced predators are not protected by any fence.

This problem is not new to conservation. In the 1990s, Australian researchers suddenly realised that our national park system was failing to protect the full range of Australian ecosystems. Despite our best efforts, we had created a system of reserves that was biased towards mountainous landscapes and deserts, and away from the fertile valley floors. The solution was to create new national parks using systematic and mathematical methods.

This discovery – the theory of systematic conservation planning – revolutionised global conservation. In 2018, conservation fences need their own systematic revolution.

Unfortunately, the national park system had natural advantages that fences lack. The vast majority of Australia’s protected areas belong to the state and federal governments. The centralised nature of the protected area network is perfect for systematic thinking and top-down optimisation – picture the Soviet Union’s Politburo. In contrast, the conservation fencing sector is diverse and decentralised – picture the third day of Woodstock.




Read more:
All cost, little benefit: WA’s barrier fence is bad news for biodiversity



Fences are built by governments at the state, federal and municipal levels, by multimillion-dollar NGOs like the Australia Wildlife Conservancy, by tiny local environmentalist groups and by profit-making corporations. This diversity is a fundamental strength of the fence network, giving it access to a spectrum of funding and ideas. But it makes it almost impossible to plan in a systematic manner. You can’t tell a small bilby conservation group in western Queensland that they should protect the central Australian rock-rat instead (Zyzomys pedunculatus). It doesn’t necessarily matter to them that bilbies are already protected behind four different fences and the rock-rat has none.

While conservation science tries to work this problem out, new and larger fences will continue to be built at an accelerating rate into the foreseeable future. True, the absence of coordination will make mathematicians break their slide rules, but each fence will do its job. The furry denizens will hop, and scurry, and bounce around, heedless of their precarious safety.

The ConversationAnd for us, from the outside looking in, these fences will help us forget the parlous state of Australian marsupial conservation. It will be possible to forget our record-breaking rate of extinctions, to forget the empty forests and deserts, and to imagine what a bushwalk might have been like before Europeans unleashed foxes and cats onto Australia.

Michael Bode, Associate Professor of Mathematics, The University of Queensland

This article was originally published on The Conversation. Read the original article.

It’s funny to name species after celebrities, but there’s a serious side too



File 20180426 175041 8uwtff.jpg?ixlib=rb 1.1
Attenborougharion rubicundus is one of more than a dozen species named after the legendary naturalist Sir David Attenborough.
Simon Grove/Tasmanian Museum and Art Gallery, CC BY

Kevin Thiele, University of Western Australia

Microleo attenboroughi. Scaptia beyonceae. Crikey steveirwini. These are the scientific names of just a few of the nearly 25,000 species of plants, animals, fungi and micro-organisms discovered and named in Australia in the past decade.

In each case, the honoured celebrity’s name is Latinised and added to the name of an existing or new genus – a set of closely related species that share common characteristics. In the above examples, Microleo (meaning “tiny lion”) is a genus of extinct carnivorous possums, while Scaptia is a genus of colourful horseflies. And in the case of Crikey steveirwini, a rare snail from northern Queensland, even the genus name honours Irwin, in the form of his favoured colloquialism.




Read more:
It’s not the science of tax, and five other things you should know about taxonomy


Scientists have been naming species in honour of celebrities since the 18th century. The father of taxonomy, Carl Linnaeus, coined names to curry the favour (and open the purses) of rich patrons.

These days, we usually do it to curry short-lived attention from the public by injecting a degree of attention-grabbing frivolity. Scaptia beyonceae is one example – so named because the fly in question has a shiny, golden bum.

I don’t think you’re ready for this genus: Scaptia beyonceae.
Erick/Wikimedia Commons, CC BY-SA

But to taxonomists and biosystematists – the scientists who discover, name, classify and document the world’s living and fossil species – the naming of organisms is a serious business.

Not just celeb jokes

Consider this. The current best estimate is that Australia, including its shores and surrounding oceans, is home to more than 600,000 species of plants, animals, fungi, microbes and other organisms.

This tally ranks Australia as one of the most biologically rich and diverse nations on Earth. We are “megadiverse” – one of a select handful of nations that together comprise less than 10% of Earth’s surface but are home to more than 70% of its living species.

The world’s biodiversity hotspots.
AAS/Royal Society Te Apārangi

Now consider this: only 30% of Australia’s living species have been discovered, named and documented so far. That leaves more than 400,000 Australian species that we know absolutely nothing about.

Estimated number of described (centre shaded areas) and undescribed (outer unshaded areas) species in Australia and New Zealand.
AAS/Royal Society Te Apārangi

Does this matter? Do organisms need names? The answer is yes, if we want to conserve our biodiversity, keep our native species, agriculture and aquaculture safe from invasive pests and diseases, discover new life-saving drugs, answer some of the greatest scientific questions ever asked, or make full use of the opportunities that nature provides to improve our health, agriculture, industries and economy.

Taxonomists construct the framework that allows us to understand and document species and manage our knowledge of them. Such a framework is essential if we are to sustainably manage life on Earth. At a time when Earth is facing an extinction crisis, brought about by land clearing, pollution and global warming, it is more vital than ever.

Without the understanding provided by taxonomists, we’re like the largest, most complex global corporation imaginable, trying to do business with no stock inventory and no real idea of what most of its products look like or do.

Time for an overhaul

The magnitude of the task seems daunting. At our current rate of progress, it will take more than 400 years even to approach a complete biodiversity inventory of Australia.

Fortunately, we don’t have to continue at our current rate. Taxonomy is in the midst of a technological and scientific revolution.

New methods allow us to cheaply sequence the entire DNA code of any organism. We can extract and identify the minute DNA fragments left in a river when a fish swims past. We are globally connected like never before. And we have supercomputers and smart algorithms that can catalogue and make sense of all the world’s species.

In this context, the release today by the Australian Academy of Science and New Zealand’s Royal Society Te Apārangi of a strategic plan to guide Australian and New Zealand taxonomy and biosystematics for the next decade is a significant step. The new plan outlines how we will rise to the grand challenge of documenting, understanding and conserving all of Australia’s biodiversity.

Sir David Attenborough endorses the new taxonomy plan.

Grand challenge

The plan lays out a blueprint for the strategic investments needed to meet this grand challenge. It envisages a decade of reinvestment, leading to a program of “hyper-taxonomy” – the discovery within a generation of all of Australia’s remaining undiscovered species.

It sets out the ways in which we can use our knowledge of species to benefit society and protect nature, and also the risks involved if we don’t. A small example: there are an estimated 200 unnamed and largely unknown species of native Australian mosquitoes. Mosquitoes cause more human deaths than any other animal on Earth. New mosquito-borne viruses and other parasites are being discovered all the time. It doesn’t take much to put these facts together to see the risks.




Read more:
We can name all of Earth’s species, but we may have to hurry


With such a weighty challenge and such important goals, it’s hardly surprising that taxonomists sometimes indulge in a little quirky name-calling. Names like Draculoides bramstokeri, a cave-dwelling relative of spiders; or the tiny, harmless pseudo-scorpion Tyrannochthonius rex; or Hebejeebie, the name that botanists simply couldn’t resist when a new genus was separated from Hebe.

Materpiscis attenboroughi lived hundreds of millions of years before its celebrity namesake.
MagentaGreen/Sularko/Museum Victoria/Wikimedia Commons, CC BY

One of the greatest celebrities of all, the naturalist Sir David Attenborough, has more than a dozen species named in his honour. No fewer than five of them are Australian. These include the brightly coloured slug-snail Attenborougharion rubicundus, and the fossil of the first known organism to give birth to live young, Materpiscis attenboroughi.

The ConversationAs Sir David puts the case in endorsing the plan, discovering and naming species is vitally important, not only for the future of taxonomy and biosystematics, but for the future of our living planet.

Kevin Thiele, Adjunct Senior Lecturer, University of Western Australia

This article was originally published on The Conversation. Read the original article.

A new wave of rock removal could spell disaster for farmland wildlife



File 20180409 114084 1cbign3.png?ixlib=rb 1.1
Rocks being removed to make way for farming.
YouTube

Damian R. Michael, Australian National University and David Lindenmayer, Australian National University

My (DM’s) perception of threatened species habitats changed the first time I encountered a population of endangered lizards living under small surface rocks in a heavily cleared grazing paddock. That was 20 years ago, at a time when land managers were well aware of the biodiversity values of conservation reserves and remnant patches of native vegetation. But back then we knew very little about the biodiversity values of the agricultural parts of the landscape.

Much has changed. Research has clearly shown the important ecological roles of different elements of the landscape for maintaining biodiversity on farms, especially for vertebrates such as carnivorous marsupials, frogs, snakes and lizards. Rocky outcrops and areas of surface rock, often termed bush rock, are among them.




Read more:
On dangerous ground: land degradation is turning soils into deserts


Areas of bush rock are biological hotspots. They represent island refuges for specialised plants and animals, and help ecosystems to thrive even in heavily cleared landscapes. In Australia, more than 200 vertebrate species depend on rocky outcrops to survive, and many of these species are found only in agricultural areas.

Recent surveys by The Australian National University on working farms in New South Wales found new populations of the threatened Pink-tailed Worm-lizard. Rocky outcrops and surface bush rock are the reason these reptiles can keep living in grazing landscapes.

Unfortunately, these critical habitats get little protection in agricultural regions. Rocky habitats may look tough, but they are fragile ecosystems and are easily damaged. Vast areas of surface rock have been removed and previously undisturbed outcrops are at risk of being destroyed by legal and routine farming activities.

The new wave of habitat loss

Licensed operators have been removing bush rock for use in landscape gardening for several decades. This is of growing concern, but is not a new threat to our native wildlife. Instead, more sophisticated technology is being developed which turns vast tracts of rocky country into farmland by crushing and destroying surface rock within minutes.

Across Australia, heavy duty sleds are being towed behind tractors to rip and remove rocky breakaways, ridgelines and small outcrops. The machinery operates like a large cheese grater, ripping bedrock with a row of tines, then crushing the displaced rocks with a large roller. These machines are designed to process large areas at once and can crush an entire hectare of rock every hour.

Turning bushrock into farmland.

Large areas of Western Australia, South Australia and western Victoria have been subject to widespread rock removal using these machines. This increasing agricultural practice has largely gone unnoticed.

While not illegal, rock-crushing has massive implications for the populations of native mammals, frogs and reptiles in agricultural areas. This approach to farming is at odds with the principle of land sharing, which encourages agriculture and wildlife conservation on the same land. Pressure to maximise productivity by increasing crop yields and intensifying land use could spell disaster for native species that live in these landscapes.

Some argue that using this new technology reduces soil damage by minimising how often agricultural machinery passes over the land. But this is not enough to offset the loss of this critical habitat. Surely we should be trying to find ways to protect and manage these environments in our cropping landscapes rather than developing ways to destroy them?

More rock-crushing.

A gap in the law

The removal of bush rock is listed as a key threatening process under the Threatened Species Conservation Act 1995. However, this does not include the removal of rock where it is necessary for carrying out a development or activity with an existing approval under the Environmental Planning and Assessment Act. Nor does it prevent the removal of rock from paddocks when it is a necessary part of routine agricultural activity.

This loophole in the legislation could spell disaster for threatened species that rely on bush rock on private property to survive. For example, the Grassland Earless Dragon is thought to have gone extinct in Victoria as a result of habitat loss, including the removal of critical surface rock habitat from across its former range.

The ConversationIt would be a real shame to lose more threatened species to poorly planned and completely avoidable agricultural practices – especially when so many progressive landholders are actively trying to restore and improve biodiversity on the land.

Damian R. Michael, Senior Research Officer, Australian National University and David Lindenmayer, Professor, The Fenner School of Environment and Society, Australian National University

This article was originally published on The Conversation. Read the original article.

Africa’s great migrations are failing but there is a solution – and you can eat it too


File 20180327 188619 hgwow8.jpg?ixlib=rb 1.1
A Wildebeeste, or Gnu.
Wikimedia Commons

Penny van Oosterzee, James Cook University

Until I went to southern Africa last year, I couldn’t imagine an African savanna without its awe-inspiring migrations. But Africa’s plains are increasingly empty of wildlife. My subsequent investigation showed that fences are marching across the savannas instead.

An audit of 24 large mammal species, which used to migrate regularly, showed that many migrations are already extinct. Fences stopped animals in their tracks, often within sight of the food and water that would sustain them. These fences had severed historically massive migrations. Millions of wild animals – wildebeest, zebra, hartebeest, springbok and many others – have likely died of thirst or hunger since the 1950s.

It’s a huge problem, yet it has received little attention. In Kenya, fences form clusters and virtual battle lines, threatening the collapse of the entire Greater-Mara ecosystem. A recent global study of 57 species of moving mammals shows that the future of the planet’s most spectacular natural events is on the cusp.




Read more:
Why smart agricultural development is needed in Africa’s savannas


A land divided

Botswana is one of the last great places on earth for free-ranging wildlife. Here, fences erected to protect European beef producers from foot-and-mouth disease (FMD) slice the country into 17 “islands”.

Fencing is expensive – especially fencing strong enough to keep out migrating animals – and it favours only a small proportion of cattle owners, locking local livestock farmers out of the export industry. To make matters worse, this comes as wildlife-based tourism is overtaking livestock as a proportion of GDP in countries like Botswana.

An elephant, behind one of the high double layered veterinary fences used in Botswana.
M. Atkinson

With colonial-era subsidies of the fencing system gone, what’s left is a lose-lose system that hinders local farmers, tourism and sustainability. Many savanna landscapes are now conflict zones between local people and wildlife.

Against this bleak backdrop, a rare good news story has emerged, driven by myth-busting science and patient advocacy. It turns out that wildlife does not play a significant role in the transmission foot-and-mouth disease, apart from the African buffalo; ironically it is more likely to be spread by cattle. Many areas, like the Kalahari, have no cattle or buffalo – so the fences in those areas serve no disease control purpose.

Careful scientific sleuthing is showing that migrations restart when these fences are removed. The longest animal migration ever recorded, of zebras across Botswana, resumed a few years ago after just a portion of fence was removed.

Process over place

Perhaps the most important breakthrough has been a relatively new scientific approach called One Health. One Health is a problem-solving strategy that tackles issues at the interface of wildlife, domestic animal and human health. A monumental effort by veterinarians and other scientists, working with communities and animal health organisations, has teased out a solution. Instead of looking at livestock’s geographic origin, it looks at the meat production process itself – from farm to fork – through a food safety lens.

This approach was initially developed for astronauts in the 1960s to avoid illness from contaminated food. It is now used throughout the food industry, from growing vegetables, to canning fruit and processing meat. For beef, it means that even in foot-and-mouth zones, a combination of vaccination, veterinary surveillance, and standardised meat preparation ensures disease-free, wildlife-friendly beef.

But it is one thing to have the solution, and quite another to convince policy makers to implement it. The focus of the One Health team soon turned to policy and advocacy. After years of research and dialogue between sectors that rarely sat at the same table, in 2012 the Southern African Development Community (SADC) issued The Phakalane Declaration on Adoption of Non-Geographic Approaches for Management of Foot and Mouth Disease.

Put simply, these new “non-geographic approaches” are not reliant on fencing.

Policy into practice

This consensus statement from southern African animal health experts was a shot heard ‘round the world. A genuine policy breakthrough finally came in 2015, in Paris, where the World Animal Health Organisation (OIE) rewrote the Terrestrial Animal Health Code to allow for international trade of fresh meat from countries or zones with foot-and-mouth disease.

Since then, Ngamiland, home to world-renowned wildlife and the recently World Heritage-listed Okavango Delta, committed late last year to reassessing its fences with wildlife-friendly beef and wildlife concerns in mind.

Okavango Delta, Botswana.
Wikimedia Commons, CC BY

Botswana is also at the centre of the Kavango Zambezi Transfrontier Conservation Area which spans parts of Angola, Botswana, Namibia, Zambia and Zimbabwe, and is home to the world’s largest remaining population of elephants. The Animal and Human Health for the Environment And Development (AHEAD) program, based at Cornell University, have been working with local partners to resolve FMD-related conflicts in the largest peace park in Africa. Meanwhile, non-fence solutions were at the forefront of a recent multi-country summit in late 2016.




Read more:
It’s time to stand tall for imperilled giraffes


The new meat processing-focused approach seems like common sense but, after generations of conflict, it is bold and brave. Botswana, leading the charge, is now on the cusp of redeeming itself in the eyes of conservationists after 70 years of fence-related wildlife deaths.

The ConversationNow, not only can this new way forward allow wildlife to rebound, but a regional economy benefiting from both wildlife and livestock can do the same – if policy-makers can indeed move – beyond fences.

Penny van Oosterzee, Adjunct Associate Professor James Cook University and University Fellow Charles Darwin University, James Cook University

This article was originally published on The Conversation. Read the original article.