3 billion animals were in the bushfires’ path. Here’s what the royal commission said (and should’ve said) about them


Ashleigh Best, University of Melbourne; Christine Parker, University of Melbourne, and Lee Godden, University of Melbourne

The Black Summer bushfires were devastating for wildlife, with an estimated three billion wild animals killed, injured or displaced. This staggering figure does not include the tens of thousands of farm animals who also perished.

The bushfire royal commission’s final report, released on October 30, recognised the gravity of the fires’ extraordinary toll on animals.




Read more:
Click through the tragic stories of 119 species still struggling after Black Summer in this interactive (and how to help)


It recommended governments improve wildlife rescue arrangements, develop better systems for understanding biodiversity and clarify evacuation options for domestic animals.

While these changes are welcome and necessary, they’re not sufficient. Minimising such catastrophic impacts on wildlife and livestock also means reducing their exposure to these hazards in the first place. And unless we develop more proactive strategies to protect threatened species from disasters, they’ll only become more imperilled.

What the royal commission recommended

The royal commission recognised the need for wildlife rescuers to have swift and safe access to fire grounds.

In the immediate aftermath of the bushfires, some emergency services personnel were confused about the roles and responsibilities of wildlife rescuers. This caused delays in rescue operations.

To address this issue, the royal commission sensibly suggested all state and territory governments integrate wildlife rescue functions into their general disaster planning frameworks. This would improve coordination between different response agencies.




Read more:
The bushfire royal commission has made a clarion call for change. Now we need politics to follow


Another issue raised by the commission was that Australia does not have a comprehensive, central source of information about its native flora and fauna. This is, in part, because species listing processes are fragmented across different jurisdictions.

For example, a marsupial, the white-footed dunnart, is listed as vulnerable in NSW, but is not on the federal government’s list of threatened species.

To better manage and protect wild animals, governments need more complete information on, for example, their range and population, and how climate change threatens them.

As a result, the royal commission recommended governments collect and share more accurate information so disaster response and recovery efforts for wildlife could be more targeted, timely and effective.

A wildlife rescuer holds a koala with burnt feet in a burnt forest
Adelaide wildlife rescuer Simon Adamczyk takes a koala to safety on Kangaroo Island.
AAP Image/David Mariuz

Helping animals help themselves

While promising, the measures listed in the royal commission’s final report will only tweak a management system for wildlife already under stress. Current legal frameworks for protecting threatened species are reactive. By the time governments intervene, species have often already reached a turning point.

Governments must act to allow wild animals the best possible chances of escaping and recovering on their own.

This means prioritising the protection and restoration of habitat that allows animals to get to safety. As a World Wildlife Fund report explains, an animal’s ability to flee the fires and find safe, unburnt habitat — such as mesic (moist) refuges in gullies or near waterways — directly influenced their chances of survival.




Read more:
Summer bushfires: how are the plant and animal survivors 6 months on? We mapped their recovery


Wildlife corridors also assist wild animals to survive and recover from disasters. These connect areas of habitat, providing fast moving species with safe routes along which they can flee from hazards.

And these corridors help slow moving species, such as koalas, to move across affected landscapes after fires. This prevents them from becoming isolated, and enables access to food and water.

Hazard reduction activities, such as removing dry vegetation that fuels fires, were also a focus for the royal commission. These can coexist with habitat conservation when undertaken in ecologically-sensitive ways.

As the commission recognised, Indigenous land and fire management practices are informed by intimate knowledge of plants, animals and landscapes. These practices should be integrated into habitat protection policies in consultation with First Nations land managers.

The commission also suggested natural hazards, such as fire, be counted as a “key threatening process” under national environment law. But it should be further amended to protect vulnerable species under threat from future stressors, such as disasters.




Read more:
Let there be no doubt: blame for our failing environment laws lies squarely at the feet of government


Governments also need to provide more funding to monitor compliance with this law. Another new World Wildlife Fund report warns that unless it is properly enforced, a further 37 million native animals could be displaced or killed as a result of habitat destruction this decade.

And, as we saw last summer, single bushfire events can push some populations much closer to extinction. For example, the fires destroyed a large portion of the already endangered glossy black-cockatoo’s remaining habitat.

What about pets and farm animals?

Pets and farm animals featured in the commission’s recommendations too.

During the bushfires, certain evacuation centres didn’t cater for these animals. This meant some evacuees chose not to use these facilities because they couldn’t take their animals with them.

To guide the community in future disasters, the commission said plans should clearly identify whether or not evacuation centres can accommodate people with animals.




Read more:
Seven ways to protect your pets in an emergency


Evacuation planning is crucial to effective disaster response. However, it is unfortunately not always feasible to move large groups of livestock off properties at short notice.

For this reason, governments should help landholders to mitigate the risks hazards pose to their herds and flocks. Researchers are already starting to do this by investigating the parts of properties that were burnt during the bushfires. This will help farmers identify the safest paddocks for their animals in future fire seasons.

Disasters are only expected to become more intense and extreme as the climate changes. And if we’re to give our pets, livestock and unique wildlife the best chance at surviving, it’s not enough only to have sound disaster response. Governments must preemptively address the underlying sources of animals’ vulnerability to hazards.




Read more:
How we plan for animals in emergencies


The Conversation


Ashleigh Best, PhD Candidate and Teaching Fellow, University of Melbourne; Christine Parker, Professor of Law, University of Melbourne, and Lee Godden, Director, Centre for Resources, Energy and Environmental Law, Melbourne Law School, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

UN report says up to 850,000 animal viruses could be caught by humans, unless we protect nature



Shutterstock

Katie Woolaston, Queensland University of Technology and Judith Lorraine Fisher

Human damage to biodiversity is leading us into a pandemic era. The virus that causes COVID-19, for example, is linked to similar viruses in bats, which may have been passed to humans via pangolins or another species.

Environmental destruction such as land clearing, deforestation, climate change, intense agriculture and the wildlife trade is putting humans into closer contact with wildlife. Animals carry microbes that can be transferred to people during these encounters.

A major report released today says up to 850,000 undiscovered viruses which could be transferred to humans are thought to exist in mammal and avian hosts.

The report, by The United Nations’ Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), says to avoid future pandemics, humans must urgently transform our relationship with the environment.

Covid-19 graphic
Microbes can pass from animals to humans, causing disease pandemics.
Shutterstock

Humans costs are mounting

The report is the result of a week-long virtual workshop in July this year, attended by leading experts. It says a review of scientific evidence shows:

…pandemics are becoming more frequent, driven by a continued rise in the underlying emerging disease events that spark them. Without preventative strategies, pandemics will emerge more often, spread more rapidly, kill more people, and affect the global economy with more devastating impact than ever before.

The report says, on average, five new diseases are transferred from animals to humans every year – all with pandemic potential. In the past century, these have included:

  • the Ebola virus (from fruit bats),
  • AIDS (from chimpazees)
  • Lyme disease (from ticks)
  • the Hendra virus (which first erupted at a Brisbane racing stable in 1994).

The report says an estimated 1.7 million currently undiscovered viruses are thought to exist in mammal and avian hosts. Of these, 540,000-850,000 could infect humans.

But rather than prioritising the prevention of pandemic outbreaks, governments around the world primarily focus on responding – through early detection, containment and hope for rapid development of vaccines and medicines.

Doctor giving injection to patient
Governments are focused on pandemic responses such as developing vaccines, rather than prevention.
Shutterstock

As the report states, COVID-19 demonstrates:

…this is a slow and uncertain path, and as the global population waits for vaccines to become available, the human costs are mounting, in lives lost, sickness endured, economic collapse, and lost livelihoods.

This approach can also damage biodiversity – for example, leading to large culls of identified carrier-species. Tens of thousands of wild animals were culled in China after the SARS outbreak and bats continue to be persecuted after the onset of COVID-19.

The report says women and Indigenous communities are particularly disadvantaged by pandemics. Women represent more then 70% of social and health-care workers globally, and past pandemics have disproportionately harmed indigenous people, often due to geographical isolation.




Read more:
The next global health pandemic could easily erupt in your backyard


It says pandemics and other emerging zoonoses (diseases that have jumped from animals to humans) likely cause more than US$1 trillion in economic damages annually. As of July 2020, the cost of COVID-19 was estimated at US $8-16 trillion globally. The costs of preventing the next pandemic are likely to be 100 times less than that.

People wearing masks in a crowd
The cost to governments of dealing with pandemics far outweighs the cost of prevention.
Shutterstock

A way forward

The IPBES report identifies potential ways forward. These include:

• increased intergovernmental cooperation, such as a council on pandemic prevention, that could lead to a binding international agreement on targets for pandemic prevention measures

• global implementation of OneHealth policies – policies on human health, animal health and the environment which are integrated, rather than “siloed” and considered in isolation

• a reduction in land-use change, by expanding protected areas, restoring habitat and implementing financial disincentives such as taxes on meat consumption

• policies to reduce wildlife trade and the risks associated with it, such as increasing sanitation and safety in wild animal markets, increased biosecurity measures and enhanced enforcement around illegal trade.

Societal and individual behaviour change will also be needed. Exponential growth in consumption, often driven by developed countries, has led to the repeated emergence of diseases from less-developed countries where the commodities are produced.

So how do we bring about social change that can reduce consumption? Measures proposed in the report include:

  • education policies

  • labelling high pandemic-risk consumption patterns, such as captive wildlife for sale as pets as either “wild-caught” or “captive-bred” with information on the country where it was bred or captured

  • providing incentives for sustainable behaviour

  • increasing food security to reduce the need for wildlife consumption.

People inspecting haul of wildlife products
Cracking down on the illegal wildlife trade will help prevent pandemics.
AP

An Australian response

Australia was one of the founding member countries of IPBES in 2012 and so has made an informal, non-binding commitment to follow its science and policy evidence.

However, there are no guarantees it will accept the recommendations of the IPBES report, given the Australian government’s underwhelming recent record on environmental policy.

For example, in recent months the government has so far refused to sign the Leaders’ Pledge for Nature. The pledge, instigated by the UN, includes a commitment to taking a OneHealth approach – which considers health and environmental sustainability together – when devising policies and making decisions.

The government cut funding of environmental studies courses by 30%. It has sought to reduce so called “green tape” in national environmental legislation, and its economic response to the pandemic will be led by industry and mining – a focus that creates further pandemic potential.




Read more:
New polling shows 79% of Aussies care about climate change. So why doesn’t the government listen?


Finally, Australia is one of few countries without a national centre for disease control and pandemics.

But there are good reasons for hope. It’s within Australia’s means to build an organisation focused on a OneHealth approach. Australia is one of the most biologically diverse countries on the planet and Australians are willing to protect it. Further, many investors believe proper environmental policy will aid Australia’s economic recovery.

Finally, we have countless passionate experts and traditional owners willing to do the hard work around policy design and implementation.

As this new report demonstrates, we know the origins of pandemics, and this gives us the power to prevent them.The Conversation

Katie Woolaston, Lawyer, Queensland University of Technology and Judith Lorraine Fisher, Adjunct Professor University of Western Australia, Institute of Agriculture

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How to reverse global wildlife declines by 2050


Wouter Taljaard/Shutterstock

Michael Obersteiner, University of Oxford; David Leclère, International Institute for Applied Systems Analysis (IIASA), and Piero Visconti, International Institute for Applied Systems Analysis (IIASA)

Species are going extinct at an unprecedented rate. Wildlife populations have fallen by more than two-thirds over the last 50 years, according to a new report from the World Wildlife Fund. The sharpest declines have occurred throughout the world’s rivers and lakes, where freshwater wildlife has plummeted by 84% since 1970 – about 4% per year.

But why should we care? Because the health of nature is intimately linked to the health of humans. The emergence of new infectious diseases like COVID-19 tend to be related to the destruction of forests and wilderness. Healthy ecosystems are the foundation of today’s global economies and societies, and the ones we aspire to build. As more and more species are drawn towards extinction, the very life support systems on which civilisation depends are eroded.

Even for hard-nosed observers like the World Economic Forum, biodiversity loss is a disturbing threat with few parallels. Of the nine greatest threats to the world ranked by the organisation, six relate to the ongoing destruction of nature.

A digger tears down trees in a Malaysian rainforest.
New infectious diseases tend to emerge in places at the forefront of environmental destruction.
Rich Carey/Shutterstock

Economic systems and lifestyles which take the world’s generous stocks of natural resources for granted will need to be abandoned, but resisting the catastrophic declines of wildlife that have occurred over the last few decades might seem hopeless. For the first time, we’ve completed a science-based assessment to figure out how to slow and even reverse these trends.

Our new paper in Nature featured the work of 60 co-authors and built on efforts steered by the Intergovernmental Panel on Biodiversity and Ecosystem Services. We considered ambitious targets for rescuing global biodiversity trends and produced pathways for the international community to follow that could allow us to meet these goals.




Read more:
How forest loss has changed biodiversity across the globe over the last 150 years


Bending the curve

The targets of the UN Convention on Biological Diversity call for global trends of terrestrial wildlife to stop declining and start recovering by 2050 or earlier. Changes in how land is used – from pristine forest to cropland or pasture – rank among the greatest threats to biodiversity on land worldwide. So what are the necessary conditions for biodiversity to recover during the 21st century while still supporting growing and affluent human societies?

Two key areas of action stand out from the rest. First, there must be renewed ambition from the world’s governments to establish large-scale conservation areas, placed in the most valuable hotspots for biodiversity worldwide, such as small islands with species found nowhere else. These reserves, in which wildlife will live and roam freely, will need to cover at least 40% of the world’s land surface to help bend the curve from decline to recovery for species and entire ecosystems.

The location of these areas, and how well they are managed, is often more important than how big they are. Habitat restoration and conservation efforts need to be targeted where they are needed most – for species and habitats on the verge of extinction.

A downward sloping line showing wildlife declines splits into three alternative trajectories, where biodiversity increases, plateaus and crashes by 2050.
The next 30 years will prove pivotal for Earth’s biodiversity.
Leclère et al. (2020), Author provided

Second, we must transform our food systems to produce more on less land. If every farmer on Earth used the best available farming practices, only half of the total area of cropland would be needed to feed the world. There are lots of other inefficiencies that could be ironed out too, by reducing the amount of waste produced during transport and food processing, for example. Society at large can help in this effort by shifting towards healthier and more sustainable diets, and reducing food waste.

This should happen alongside efforts to restore degraded land, such as farmland that’s becoming unproductive as a result of soil erosion, and land that’s no longer needed as agriculture becomes more efficient and diets shift. This could return 8% of the world’s land to nature by 2050. It will be necessary to plan how the remaining land is used, to balance food production and other uses with the conservation of wild spaces.

Without a similar level of ambition for reducing greenhouse gas emissions, climate change will ensure the world’s wildlife fares badly this century. Only a comprehensive set of policy measures that transform our relationship with the land and rapidly scale down pollution can build the necessary momentum. Our report concludes that transformative changes in our food systems and how we plan and use land will have the biggest benefits for biodiversity.

But the benefits wouldn’t end there. While giving back to nature, these measures would simultaneously slow climate change, reduce pressure on water, limit nitrogen pollution in the world’s waterways and boost human health. When the world works together to halt and eventually reverse biodiversity loss, it’s not only wildlife that will thrive.The Conversation

Michael Obersteiner, Director, Environmental Change Institute, University of Oxford; David Leclère, Researcher in Ecosystem Services and Management (ESM) Program, International Institute for Applied Systems Analysis (IIASA), and Piero Visconti, Research Scholar, Ecosystem Services and Management Programme, International Institute for Applied Systems Analysis (IIASA)

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Banning trophy hunting can put wildlife at risk: a case study from Botswana



Before the trophy hunting ban, Botswana specialised in big game such as elephants, buffalos and leopards.
Shutterstock

Peet Van Der Merwe, North-West University and Lelokwane Lockie Mokgalo, Botswana Accountancy College

Wildlife tourism is an important segment of Botswana’s tourism industry, representing 80% of the total annual revenue of trips to Botswana. Key to this are protected areas which have led to the growth of the country’s wildlife tourism.

Wildlife tourism can take place either in the animals’ natural environments such as national parks, game reserves or other protected areas or in captivity, such as zoos or rehabilitation centres. Activities during these tours can be classified into two main groups; non-consumptive (viewing and photographing of wild animals) and consumptive which refers to activities such as trophy hunting and fishing.

Since the start of trophy hunting operations in 1996 in Botswana, trophy hunting has grown steadily. The industry employed an estimated 1,000 people, received 350 hunters annually and sold more then 5,500 hunting days per year. In 2011, a year before the trophy hunting ban was announced in the country, the industry netted Botswana US$20 million in revenue annually from 2,500 animals sold to trophy hunters. Botswana specialised in big game such as elephants, buffalo and leopard which generated higher hunting fees from few animals.

The main reason given by the Botswana government for the trophy hunting ban was the decline in the number of wildlife due to trophy hunting – a reason that was widely questioned by trophy hunting operators.

The ban on trophy hunting had an adverse impact as highlighted by various data sources. We therefore set out in 2018 to study the impact of the ban of trophy hunting on local communities. We chose two communities, Sankuyo (400 inhabitants in Northern Botswana) and Mmadinare (12,000 inhabitants in Eastern Botswana). The two communities that were selected for the study, had prior involvement in hunting.

We collected data through interviews with community members and leaders of the community-based organisations trusts. These are legal entities established to represent interests of communities and are often made up of multiple villages of close geographical proximity.

We also interviewed former employees from the hunting sector and small business owners. Some of the questions asked were: how did hunting tourism benefit the community? Was hunting seen as a positive impact on the community? What are the current challenges that the community face since the ban of trophy hunting? Have attitudes toward wildlife changed from the times of trophy hunting?

Human-wildflife conflict

Participants said they’d lost income as a result of the trophy hunting ban. The study didn’t focus on determining how much or what percentage was lost. Participants said the ban also led to more instances of human-wildlife conflict.

In addition, community members said wild animals were a risk to their livelihoods as they were a danger to livestock and crop production. The 2016 Review of Community Based Natural Resources Management in Botswana, indicated that the top three most important livelihood sources for communities were livestock, social welfare and crops. This can undermine conservation efforts, especially if the benefits of co-existing with wildlife are minimal.

Another finding was that both communities were outraged that they weren’t consulted on the trophy hunting ban in 2014. One of the participants, a business owner, said:

Aah, I don’t know I just heard them saying it will be the last hunting season and they didn’t explain why.

Another participant, former hunting employee, reiterated the business owner’s sentiments:

What I remember is them informing us that hunting is being stopped. As for asking for our opinions, I don’t remember them coming to do that.

The results of the study also showed that the two communities experienced the benefits of trophy hunting differently. Community tourism benefits from trophy hunting are more pronounced in smaller communities.

In Sankuyo community members, former hunting employees and small business operators all said that they benefited through employment contribution, the sale of meat, as well as financial contribution to community development. But in Mmadinare, the larger community, the members felt they didn’t benefit that much from trophy hunting. Although some former hunting employees did mention benefits such as sale of meat, employment and skills development.

The study found that both communities experienced challenges as a result of the ban on trophy hunting. The participants decry an increase in the number of wildlife in the areas and expressed that this has led to an escalation of human-wildlife conflict. This conflict involve mostly elephants, kudus, antelopes and buffaloes which invaded people’s farms.

A former hunting employee in Sankuyo said:

In the past because of trophy hunting it was not easy to see animals around. Nowadays, they are everywhere, sometimes we see them in our yards.

The result was that almost half of the participants (47.8%) of in both communities expressed that their attitudes were negative towards wildlife as a result of escalation in such conflicts. This puts the sustainability of wildlife resources in jeopardy.

Last year Botswana’s parliament passed a motion to lift a ban on elephant hunting, which had been in place since 2014. This will only allow the hunting of elephants and hunting licenses were auctioned in February 2020 as elephants were seen as the main contributors to animal and conflicts with in certain areas.

Our research supports this, and further recommends the lifting of the ban on the remaining animals listed under the ban. This can help to alleviate challenges experienced by households in communities like Sankuyo, where trophy hunting was a key source of income. The lifting of the ban will also reverse the negative attitudes within communities that threaten conservation efforts.The Conversation

Peet Van Der Merwe, Professor in Tourism, North-West University and Lelokwane Lockie Mokgalo, Lecturer, Botswana Accountancy College

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Predators, prey and moonlight singing: how phases of the Moon affect native wildlife



Wes Mountain/The Conversation, CC BY-ND

Euan Ritchie, Deakin University; Courtney Marneweck, Clemson University , and Grant Linley, Charles Sturt University

Humans have long been inspired and transfixed by the Moon, and as we’re discovering, moonlight can also change the behaviour of Australian wildlife.

A collection of recently published research has illuminated how certain behaviours of animals – including potoroos, wallabies and quolls – change with variation in ambient light, phases of the Moon and cloud cover.




Read more:
How big is the Moon? Let me compare …


One study found small mammals were more active on cloudy nights. Another found variation in moonlight led to differing amounts of species captured in non-lethal traps. And a study on willie wagtails found males just love singing on a full moon.

These findings are interesting from a natural history perspective. But they’ll also help ecologists and conservation scientists better locate and study nocturnal animals, and learn how artificial light pollution is likely changing where animals can live and how they behave.

Moonlit predator-prey games of hide and seek

Most of Australia’s mammals are nocturnal, and some smaller species are thought to use the cover of darkness to avoid the attention of hungry predators. However, there’s much we don’t know about such relationships, especially because it can be difficult to study these interactions in the wild.

Eastern barred bandicoots became more active on darker nights.
Simon Gorta

In the relatively diverse mammal community at Mt Rothwell, Victoria, we examined how variation in ambient light affected species’ activity, and how this might influence species interactions. Mt Rothwell is a fenced conservation reserve free of feral cats and foxes, and with minimal light pollution.

Over two years, we surveyed the responses of predator and prey species to different light levels from full, half and new moon phases.




Read more:
One little bandicoot can dig up an elephant’s worth of soil a year – and our ecosystem loves it


Potential prey species in our study included eastern barred and southern brown bandicoots, long-nosed potoroos, brushtailed rock-wallabies, and brushtail and common ringtail possums. Eastern and spotted-tailed quolls are their potential predators.

Just as we predicted, we found that while there does appear to be relationships between cloud cover, Moon phase and mammal activity, these interactions depend on the sizes and types of mammals involved.

Spotted tail quoll
The spotted-tailed quoll, a meat-eating marsupial, hunts smaller prey at night.
Shutterstock

Both predators and prey generally increased their activity in darker conditions.
Smaller, prey species increased their activity when cloud cover was higher, and predators increased their activity during the half and new moon phases.

This suggests their deadly game of hide and seek might intensify on darker nights. And prey might have to trade off foraging time to reduce their chances of becoming the evening meal.

What happens in the wild?

It’s important to acknowledge that studies in sanctuaries such as Mt Rothwell might not always reflect well what goes on in the wild, including in areas where introduced predators, such as feral cats and red foxes, are found.

Another recent study, this time of small mammals in the wilds of Victoria’s Mallee region, sheds further light on the situation. The authors tested if variation in weather and Moon phase affected the numbers of five small mammal species – Bolam’s mouse, common dunnart, house mouse, southern ningaui, and western pygmy possum – captured in pitfall traps.

Ningauis are less likely to be caught in ecological surveys with increasing moonlight.
Kristian Bell

Pitfall traps are long fences small animals can’t climb over or through, so follow along the side until they fall into a bucket dug in the ground. Ecologists typically use these traps to capture and measure animals and then return them to the wild, unharmed.




Read more:
Eastern quolls edge closer to extinction – but it’s not too late to save them


At more than 260 sites and over more than 50,000 trap nights, they found wind speed, temperature and moonlight influenced which species were caught and in what numbers.

For example, captures of a small native rodent, Bolam’s mouse, and carnivorous marsupial, southern ningaui, decreased with more moonlight, whereas captures of pygmy possums were higher with more moonlight.

Variation in the moon phase and associated light can change how active mammals are.
Aaron Greenville

Moonlight songbird serenades

Research from last month has shown even species normally active by day may change their behaviour and activity by night.

It’s not uncommon to hear bird song by night, including the quintessentially Aussie warbling of magpies. Using bioacoustic recorders and song detection software, these researchers show the willie wagtail – another of Australia’s most recogisable and loved birds – is also a nighttime singer, particularly during the breeding season.

While both male and female wagtails sing by day, it is the males that are most vocal by night. And it seems the males aren’t afraid of a little stage-lighting either, singing more with increasing moonlight, with performances peaking during full moons.

While characteristically playful by day, male willie wagtails can really turn on a vocal performance by night.
Jim Bendon/Flickr

This work provides insight into the importance and potential role of nocturnal song for birds, such as mate attraction or territory defence, and helps us to better understand these behaviours more generally.

Moonlight affects wildlife conservation

These studies, and others, can help inform wildlife conservation, as practically speaking, ecological surveys must consider the relative brightness of nights during which work occurred.

Depending on when and where we venture out to collect information about species, and what methods we use (camera traps, spotlighting, and non-lethal trapping) we might have higher or lower chances of detecting certain species. And this might affect our insights into species and ecosystems, and how we manage them.

Artificial lighting can change the behaviour of wildlife.
Kenny Louie

As dark skies become rarer in many places around the world, it also begs a big question. To what extent is all the artificial light pollution in our cities and peri-urban areas affecting wildlife and ecosystems?




Read more:
Turn off the porch light: 6 easy ways to stop light pollution from harming our wildlife


Pipistrelle bats, for example, will be roughly half as active around well-lit bridges than unlit bridges. They’ll also keep further away from well-lit bridges, and fly faster when near them.

This means artificial light might reduce the amount and connectivity of habitat available to some bat species in urban areas. This, in turn could affect their populations.

Research is underway around the world, examining the conservation significance of such issues in more detail, but it’s another timely reminder of the profound ways in which we influence the environments we share with other species.


We would like to acknowledge Yvette Pauligk, who contributed to our published work at Mt Rothwell, and that the traditional custodians of this land are the Wathaurong people of the Kulin nation.The Conversation

Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University; Courtney Marneweck, Postdoctoral Researcher in Carnivore Ecology, Clemson University , and Grant Linley, PhD Candidate, Charles Sturt University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

What ‘The Birdman of Wahroonga’ and other historic birdwatchers can teach us about cherishing wildlife



Shutterstock

Russell McGregor, James Cook University

Under the first coronavirus lockdowns, birdwatching increased tenfold in Australia, with much of it done in and near the watchers’ own backyards. And as Melbourne settles into stage 4 restrictions, we’ll likely see this rise again.

The increase in backyard birding is good news for conservation and can help birds recover from bushfires and other environmental catastrophes. But backyard birding isn’t new, nor is its alliance with conservation.




Read more:
Birdwatching increased tenfold last lockdown. Don’t stop, it’s a huge help for bushfire recovery


Since the turn of the 20th century, when birdwatching as a hobby began in Australia, birders have cherished the birds in their backyards as much as those in outback wilds. Birdwatchers admired wild birds anywhere, for one of their big motivations was — and is — to experience and conserve the wild near home.

Harry Wolstenholme holding a bird in front of him in his garden in Sydney
Pioneering birder Harry Wolstenholme recorded 21 native species nesting in his garden.
Alec Chisholm/National Library of Australia, Author provided

This wasn’t an abstract ambition, but a heartfelt commitment. Birdwatchers have long known that if we are to conserve nature, we need not only the intellectual expertise of science but also an emotional affinity with the living things around us. Birders in Sydney in the 1920s and ‘30s knew this well.

The Birdman of Wahroonga

Harry Wolstenholme, son of the feminist Maybanke Anderson, was an office-bearer in the Royal Australasian Ornithologists’ Union and a keen amateur birdwatcher. In the 1920s, his usual birding site was his own garden in the northern Sydney suburb of Wahroonga.

There, bird life was prolific. Harry recorded 21 native and five introduced species nesting in or near his garden, plus many more avian visitors.

His garden drew a stream of notable birders from the Sydney branch of the ornithologists’ union, such as wildlife photographer Norman Chaffer, naturalist and journalist Alec Chisholm, and businessman Keith Hindwood. (The union members were predominantly male, though with a liberal sprinkling of women, including Perrine Moncrieff who became its first female president in 1932.)

Keith Hindwood in black and white, with a White-eared Honeyeater on his head
Keith Hindwood, with a White-eared Honeyeater on his head, 1929.
Mitchell Library, Author provided

For his closeness to the birds, Harry earned the nickname “The Birdman of Wahroonga”. That suburb still hosts a good range of species, although the bird life is no longer as prolific as in Harry’s day.

Many others birded in city environs and, like Harry, published their suburban ornithological studies in the union journal, The Emu.

In 1932, Alec Chisholm devoted a whole book, Nature Fantasy in Australia, to birding in Sydney and surrounds. Featured on its early pages is a painting by celebrated bird artist Neville Cayley captioned “The Spirit of Sydney: Scarlet Honeyeater at nest in suburban garden”.

Scarlet honeyeater feeding on grevillia nectar
Scarlet honeyeaters can still be spotted in urban parts of Australia.
Shutterstock

The fact this gorgeous little bird was common in Sydney’s gardens exemplifies Chisholm’s theme of urban Australians’ ready access to the wonders of nature. Scarlet Honeyeaters can still be found in Sydney though they are no longer common there.

Mateship with Birds

Like all Chisholm’s nature writings, Nature Fantasy promoted conservation.

Conservation then differed from conservation now, having a stronger aesthetic orientation and less ecological content. Nonetheless, these pioneer conservationists, among whom birdwatchers were prominent, laid the foundations on which environmentalists later built.

Chisholm urged people not merely to observe birds but also, more importantly, to love and cherish them. In his first book in 1922, Mateship with Birds, he urged readers to open their hearts to their avian compatriots and embrace them as friends and fellow Australians.

Jacky winter, a small, pale-coloured bird is perched on a white log.
Early birders believed names of birds like ‘Jacky Winter’ would help us embrace birds as fellow Australians.
Shutterstock

One way of fostering this feeling, Chisholm and his birding contemporaries believed, was to give birds attractive names. For example, “Jacky Winter” struck the right note, and as Chisholm wrote:

it would be a healthy thing if we had more of these familiar names for our birds, bringing as they do, a feeling or sense of intimacy.

While those birders urged people to cultivate an emotional connection with nature, and while most were amateur rather than professional ornithologists, they nonetheless made major contributions to the scientific study of birds.

Science was needed, they realised, but so was feeling. As one reviewer of Nature Fantasy enthused, Chisholm was a naturalist “who in his writings combines with the exact research of a scientist the sensibility of a poet”.




Read more:
Bath bullies, bacteria and battlegrounds: the secret world of bird baths


Birders today

Our city birdscapes have since changed. Some species have dwindled; some have increased. But suburbia still holds a remarkable degree of biodiversity, if only we’re prepared to look.

A woman holds binoculars to her eyes among trees
Lockdown is a great time to try backyard birdwatching.
Shutterstock

The world of the birders of the 1920s and ’30s is gone. Our attitudes toward nature are cluttered with fears unknown in their day, such as climate change. Yet those early birders still have something worthwhile to tell us today: the need to connect emotionally and tangibly with nature.

To hear that message, we need not, and should not, jettison today’s environmental fears. But fear needs complementing with more positive emotions, like love.

Despite — or because of — the prominence of environmental alarms in today’s world, the need to admire and love living things remains as pressing as ever. As birdwatchers have long known, the birds fluttering in our own backyards are adept at fostering those feelings.




Read more:
For whom the bell tolls: cats kill more than a million Australian birds every day


The Conversation


Russell McGregor, Adjunct Professor of History, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

When rehoming wildlife, Indigenous leadership delivers the best results



Te Nohoaka o Tukiauau (Sinclair Wetlands)
Glen Riley, Author provided

Aisling Rayne, University of Canterbury; Channell Thoms, University of Canterbury, and Levi Collier-Robinson, University of Canterbury

Whakapapa [genealogy] binds tākata whenua [people of the land] to the mountains, rivers, coasts and other landscapes, linking the health of the people with that of the environment. Like humans, species have whakapapa that connects them to their natural environment and to other species. If whakapapa is understood thoroughly, we can build the right environment to protect and enhance any living thing.

These are the words of Mananui Ramsden (with tribal affiliations to Kāti Huikai, Kāi Tahu), coauthor of our new work, in which we show that centring Indigenous peoples, knowledge and practices achieves better results for wildlife translocations.

Moving plants and animals to establish new populations or strengthen existing ones can help species recovery and make ecosystems more resilient. But these projects are rarely led or co-led by Indigenous peoples, and many fail to consider how Indigenous knowledge can lead to better conservation outcomes.

Co-author Levi Collier-Robinson (Ngāi Tahu, Ngāti Apa ki ta rā tō, Te Whānau-ā-Apanui, Ngāti Porou) with students from Te Kura o Tuahiwi.
Ashley Overbeek

We argue that now more than ever, we need transformative change that brings together diverse ways of understanding and seeing to restore ecosystems as well as cultural practices and language.




Read more:
Indigenous peoples are crucial for conservation – a quarter of all land is in their hands


Reimagining conservation

Where Western science often focuses on specific parts of complex systems, Indigenous knowledge systems consider all parts as interconnected and inseparable from local context, history and place.

Experience in Aotearoa and around the world shows Indigenous-led or co-led approaches achieve better environmental and social outcomes. For example, by combining distributional data with cultural knowledge about plants used for weaving or traditional medicines, we can work out whether they will grow in places where they are most important to people under future climate conditions.

In our Perspective article, we present a new framework for reimagining conservation translocations through the Mi’kmaq (First Nations people of Canada) principle of Etuapmumk, or “Two-Eyed Seeing”. In the words of Mi’kmaq elder Dr Albert Marshall, Two-Eyed Seeing is:

…learning to see from one eye with the strengths of Indigenous knowledges and ways of knowing, and from the other eye with the strengths of Western knowledges and ways of knowing … and learning to use both these eyes together, for the benefit of all.

At the centre of this framework lies genuine partnership, built on mutual trust and respect, and collective decision making. This approach can be extended to local contexts around the world.




Read more:
Children make connections to Aki (Earth) through Anishinaabe teachings


Two-Eyed Seeing case studies

In Aotearoa, Te Tiriti o Waitangi (Treaty of Waitangi, 1840) provides a foundation for building equitable partnerships between tākata whenua (people of the land) and tākata Tiriti (people of the treaty). For us, as a team of Māori and non-Māori researchers and practitioners, Two-Eyed Seeing means centring mātauraka Māori (Indigenous knowledge systems).

Together with two conservation trusts, Te Nohoaka o Tukiauau and Te Kōhaka o Tūhaitara, we have been working to co-develop strategies to restore native wildlife at two wetlands in Te Waipounamu (the South Island).

These studies are weaving together genomic data and mātauraka Māori (Māori knowledge systems) to restore populations of mahika kai (food-gathering) species such as kēkēwai (freshwater crayfish) for customary or commercial harvest, and kākahi (freshwater mussel) as ecosystem engineers. We are also developing translocation strategies for kōwaro (Canterbury mudfish), one of Aotearoa’s most threatened freshwater fish.

Tuna (eel) monitoring at Te Nohoaka o Tukiauau (Sinclair wetland).
Paulette Tamati-Elliffe, Author provided

Where ecological data is scarce in Western science, such as for many native freshwater fish and invertebrates, past management of those species (for example, translocations along ancestral trails) can inform whether, and how, we mix different populations together today.

For some species, such as kōwaro, there has been little consideration as to how the mātauraka (knowledge) held by local iwi (tribes) and hapū (sub-tribes) can enhance conservation translocation outcomes.

Better conservation translocation outcomes

The biodiversity crisis calls on all of us to work together at the interface of Indigenous knowledge systems and Western science.

At the coastal park Te Nohoaka o Tukiauau and Tūhaitara, the revival and inter-generational transfer of knowledge and customary practices is restoring ecosystems that will be renowned for sustainable practice and as important Kāi Tahu mahika kai (food-gathering places).

We contend that centring Indigenous people, values and knowledge through Indigenous governance, or genuine co-governance, will enhance conservation translocation outcomes elsewhere, particularly for our most threatened and least prioritised species.


This work was carried out together with co-authors Greg Byrnes, John Hollows, Professor Angus McIntosh, Makarini Rupene (Ngāi Tūāhuriri, Ngāi Tahu), Mananui Ramsden (Kāti Huikai, Kāi Tahu), Paulette Tamati-Elliffe (Kāi Te Pahi, Kāi Te Ruahikihiki (Otākou)), Te Atiawa, Ngāti Mutunga) and Associate Professor Tammy Steeves.The Conversation

Aisling Rayne, PhD candidate, University of Canterbury; Channell Thoms, , University of Canterbury, and Levi Collier-Robinson, PhD Student, University of Canterbury

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The mystery of the Top End’s vanishing wildlife, and the unexpected culprits



A brush-tailed rabbit-rat, one of the small mammals disappearing in northern Australia.
Cara Penton, Author provided

Alyson Stobo-Wilson, Charles Darwin University; Brett Murphy, Charles Darwin University; Graeme Gillespie, University of Melbourne; Jaana Dielenberg, The University of Queensland, and John Woinarski, Charles Darwin University

Only a few decades ago, encountering a bandicoot or quoll around your campsite in the evening was a common and delightful experience across the Top End. Sadly, our campsites are now far less lively.

Northern Australia’s vast uncleared savannas were once considered a crucial safe haven for many species that have suffered severe declines elsewhere. But over the last 30 years, small native mammals (weighing up to five kilograms) have been mysteriously vanishing across the region.




Read more:
Scientists and national park managers are failing northern Australia’s vanishing mammals


The reason why the Top End’s mammals have declined so severely has long been unknown, leaving scientists and conservation managers at a loss as to how to stop and reverse this tragic trend.

The author smiles at an adorable glider in a little blanket she's holding.
Alyson Stobo-Wilson with a savanna glider. Gliders are among the mammals rapidly declining in northern Australia.
Alyson Stobo-Wilson, Author provided

Our major new study helps unravel this longstanding mystery. We found that the collective influence of feral livestock — such as buffaloes, horses, cattle and donkeys — has been largely underestimated. Even at quite low numbers, feral livestock can have a big impact on our high-value conservation areas and the wildlife they support.

The race for solutions

In 2010, Kakadu National Park conducted a pivotal study on Top End mammals. It found that between 1996 and 2009, the number of native mammal species at survey sites had halved, and the number of individual animals dropped by more than two-thirds. Similar trends have since been observed elsewhere across the Top End.

Given the scale and speed of the mammal declines, the need to find effective solutions is increasingly urgent. It has become a key focus of conservation managers and scientists alike.

The list of potential causes includes inappropriate fire regimes, feral cats, cane toads, feral livestock, and invasive weeds.

Many small and medium-sized mammals are in rapid decline in northern Australia.

With limited resources, it’s essential to know which threats to focus on. This is where our study has delivered a major breakthrough.

We looked for patterns of where species have been lost and where they are hanging on. With the help of helicopters to reach many remote areas, we used more than 1,500 “camera traps” (motion-sensor cameras to record mammals) and almost 7,500 animal traps (such as caged traps) to survey 300 sites across the national parks, private conservation reserves and Indigenous lands of the Top End.

A new spotlight on feral livestock

We found most parts of the Top End have very few native mammals left. The isolated areas where mammals are persisting have retained good-quality habitat, with a greater variety of plant species and dense shrubs and grasses.

This habitat provides more shelter and food for native mammals, and has fewer cats and dingoes, which hunt more efficiently in open areas. In contrast, sites with degraded habitat have much less food and shelter available, and native mammals are more exposed to predators.

Six dark coloured horses roam among sparse trees in the Top End.
Feral horses can overgraze and trample over habitat, making it far less suitable for small native mammals.
Jaana Dielenberg, Author provided

Across northern Australia, habitat quality is primarily driven by two factors: bushfires and introduced livestock, either farmed or feral.

Our surveys revealed that areas with more feral livestock have fewer native mammals. This highlights that the role of feral livestock in the Top End’s mammal declines has previously been underestimated.

Even at relatively low densities, feral livestock are detrimental to small mammals. Through overgrazing and trampling, they degrade habitat and reduce the availability of food and shelter for native mammals.




Read more:
The world’s best fire management system is in northern Australia, and it’s led by Indigenous land managers


Frequent, intense fires also play a big role. Australia’s tropical savannas are among the most fire-prone on Earth, but fires that are too frequent, too hot and too extensive remove critical food and shelter.

Yet, even if land managers can manage fires to protect biodiversity, for example by reducing the occurrence of large, intense fires, the presence of feral livestock will continue to impede native mammal recovery.

A wild buffalo walks over grass, in front of trees.
Even small numbers of feral livestock can play a big role in native mammal declines.
Northern Territory Government, Author provided

A new way to manage cats

Cats have helped drive more than 20 Australian mammals to extinction. So it’s not surprising we found fewer native mammals at our sample sites where there were more cats.

However, our results suggest the best way to manage the impact of cats in this region may not be to simply kill cats, which is notoriously difficult across vast, remote landscapes. Instead, it may be more effective to manage habitat better, tipping the balance in favour of native mammals and away from their predators.

A striped, ginger cat with shining eyes looks at the camera at night.
A feral cat at one of the study sites. Cats have helped cause more than 20 native mammal extinctions.
Northern Territory Government, Author provided

The combination of prescribed burning to protect food and shelter resources, and culling feral livestock, might be all that’s needed to support native mammals and reduce the impact of feral cats.

What about dingoes?

Many scientists have suggested dingoes could also be part of the solution to reducing cat impacts — as cats are believed to avoid dingoes. With this in mind, we explored the relationship between the two predators in this study.

A brownish motion detection camera trap strapped to a tree.
One of more than 1,000 motion detection cameras used in this study.
Jaana Dielenberg, Author provided

We found no evidence dingoes influenced the distribution of feral cats. In fact, survey sites with more dingoes had fewer native small mammals, suggesting a negative impact by dingoes.

But, unlike cats, culling dingoes is not an option because they provide other important ecological roles, and are culturally significant for Indigenous (and non-Indigenous) Australians.

Controlling herbivores, not predators

Our study suggests an effective way to halt and reverse Top End mammal losses is to protect and restore habitat. For example, by improving fire management and controlling feral livestock through culling.




Read more:
EcoCheck: Australia’s vast, majestic northern savannas need more care


It is also very important to conserve the environments that still have high-quality habitat and healthy mammal communities, such as the high-rainfall areas along the northern Australian coast. These areas provide refuge for many of our most vulnerable mammal species.

A photo from a camera trap showing a black-footed tree-rat on its hind legs.
The native black-footed tree-rat has had major declines across northern Australia. It’s vulnerable to cats and is now restricted to areas that still have good quality habitat, fewer herbivores and less frequent fire.
Hugh Davies, Author provided

The tropical savannas of northern Australia are the largest remaining tract of tropical savanna on Earth and new species are still being discovered.

While there’s more research to be done, it’s crucial we start managing habitat better, before we lose more of our precious mammal species.


The authors would like to gratefully acknowledge the support from many Indigenous ranger groups, land managers and Traditional Owners. This includes the Warddeken, Bawinanga, Wardaman and Tiwi rangers, the Traditional Owners and land managers of Kakadu, Garig Gunak Barlu, Judbarra/Gregory, Litchfield and Nitmiluk National Parks, Djelk, Warddeken and Wardaman Indigenous Protected Areas, and Fish River Station and was facilitated by the Northern, Tiwi and Anindilyakwa Land Councils.The Conversation

Alyson Stobo-Wilson, Postdoctoral Research Associate, Charles Darwin University; Brett Murphy, Associate Professor / ARC Future Fellow, Charles Darwin University; Graeme Gillespie, Honorary Research Fellow, University of Melbourne; Jaana Dielenberg, Science Communication Manager, The University of Queensland, and John Woinarski, Professor (conservation biology), Charles Darwin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Meet Moss, the detection dog helping Tassie devils find love



Zoos Victoria, Author provided

La Toya Jamieson, La Trobe University and Marissa Parrott, University of Melbourne

Moss bounds happily through the bush showing the usual exuberance of a young labrador. Despite this looking like play, he is on a serious mission to help fight the extinction of some of our most critically endangered species.

Moss is a detection dog in training. Unlike other detection dogs, who might sniff out drugs or explosives, he’ll be finding some of Victoria’s smallest, best camouflaged and most elusive animals.




Read more:
Sit! Seek! Fly! Scientists train dogs to sniff out endangered insects


These dogs use their exceptional olfactory senses to locate everything from koalas high in the trees, desert tortoises burrowed deep under soil and even whales — often more effectively than any human team could aspire to.

What makes Moss unique, however, is he’ll not only find endangered species in the wild, but will also be part of a larger team helping endangered species breed in captivity. These dogs will be the first in the world to do this, starting with a ground-breaking trial with Tasmanian devils.

Moss will eventually help find the tiny, cryptic Baw Baw Frog in the wild.

Why Moss needed a job

Wildlife detection dogs are a very rare type of dog — they are highly motivated, engaged and energetic, but also incredibly reliable and safe around the smallest of creatures.

And Moss is the first dog to join Zoos Victoria’s Detection Dog squad, a permanent group of highly trained dogs that will live at Healesville Sanctuary.




Read more:
Is your dog happy? Ten common misconceptions about dog behaviour


Moss was adopted at 14 months old, after he somewhat “failed” at being a family pet. He is a hurricane of energy with an intelligent and playful mind. He’s thriving with a job to keep him occupied and new challenges for his busy brain.

One sign he was perfect for this program was his indifference to the free range chickens at his foster home. For obvious reasons, a dog who likes chasing chickens wouldn’t be a good candidate for protecting some of Australia’s rarest feathered treasures.

Moss will also help monitor incredibly well camouflaged plains-wanderers, which are nearly impossible to spot in the day.

Currently Moss is learning crucial foundational skills, and getting plenty of exposure to different environments. Equally important, he is developing a deep bond and trust with his handlers.

The detection dog-handler bond is crucial not only for his happiness, but also for working success and longevity. Research from 2018 found a strong bond between a handler and their dog dramatically improved the dog’s detection results and reduced signs of stress.

The Tasmanian devil’s advocate

Healesville Sanctuary breeds endangered Tasmanian Devils every year as part of an insurance program to support conservation and research. This program is crucial to help protect the devil following an estimated 80% decline in the wild due to a horrific transmissible cancer, Devil Facial Tumour Disease.




Read more:
We developed tools to study cancer in Tasmanian devils. They could help fight disease in humans


But managing a predator that’s shy, nocturnal and prefers to be left alone can be tricky.

Wildlife, including Tasmanian devils, need a hands-off approach where possible, so they can maintain natural behaviours and thrive in their environment.

Tasmanian devils prefer to be left alone.
Healesville Sanctuary, Author provided

In the wild, devils leave scats (faeces) at communal latrine sites and use scent for communication. Male devils can tell a female is ready to mate by smelling her scat. And we think dogs could be trained to detect this, too.

We aim to train dogs to detect an odour profile in the collected scat of female devils coming into their receptive (oestrus) periods, so we can introduce females and suitable males to breed at the optimal time. The odour profile will be further verified via laboratory analyses of hormones in the scats.




Read more:
Koala-detecting dogs sniff out flaws in Australia’s threatened species protection


The project will also explore whether dogs can detect pregnancy and lactation in the devils.

Currently, the best way to determine if a female has young is to look in her pouch, but our preference is to remain at a distance during this important time while females settle into being new mums.

Moss with his trainer, Latoya. Moss is a ball of energy and thrives in the challenging environment of conservation detection.
Healesville Sanctuary, Author provided

If the dogs are able to smell a scat sample (while never coming into contact with the devil) and identify that a female is lactating with small joeys in her pouch, we can support her – for example, by increasing her food – while keeping a comfortable distance.

A new partnership in conservation

The results from this devil breeding research could offer innovative new options for endangered species breeding programs around the world.

Wildlife detection in the field means we can more accurately monitor some of our most critically endangered species, and quickly assess the impact of catastrophic events such as bushfires.




Read more:
Curious kids: How far away can dogs smell and hear?


Detection dogs are the perfect intermediary between people and wildlife — they can sniff out what we can’t and communicate with us as a team.

And over the next few years, the Detection Dog Squad will expand to five full-time canines. They will all be selected based on their personalities rather than specific breeds, so will likely come in all shapes and sizes.

Dogs may yet go from being man’s best friend to the devil’s best friend and beyond, all starting with a happy labrador named Moss.


This article is co-authored by Naomi Hodgens, Wildlife Detection Dog Officer at Zoos Victoria, and Dr Kim Miller, Life Sciences Manager, Conservation and Research, at Healesville Sanctuary, Zoos Victoria.The Conversation

La Toya Jamieson, Wildlife Detection Dog Specialist, La Trobe University and Marissa Parrott, Reproductive Biologist, Wildlife Conservation & Science, Zoos Victoria, and Honorary Research Associate, BioSciences, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

What zoologists should learn from a zoonotic pandemic



The best-known example of a zoonotic pandemic is HIV/AIDS, which originated from chimpanzees.
GettyImages

Aliza le Roux, University of the Free State and Bettine van Vuuren, University of Johannesburg

Zoology has an illustrious history; it has triggered paradigm shifts in thinking. One of the best known was Darwin’s theory of evolution, based on his observations of the natural world. It became the cornerstone of current zoological research.

Very few sub-disciplines of zoology are not firmly anchored on ideas around change over time, driven by some advantage that individuals get from specific heritable characteristics. In this spirit of observation of nature, linked to robust and detailed analyses of trends, zoologists have been sounding the alarm for many years about the current mass extinction and the negative consequences of disrespecting nature.

Those chickens have come home to roost.

Ultimately, COVID-19 is zoological in origin. And now, in the midst of the pandemic, it is modellers, virologists, medical specialists and engineers who are driving the scientific response to the global crisis.

Their role is crucial because they can contribute to preventing zoonotic outbreaks in future. But how? What could zoologists do differently?

Firstly, multidisciplinary research will be the cornerstone, forging links that haven’t existed before. Secondly, we will need to broaden our species focus. So far, research has targeted species known for carrying diseases that can infect other species – such as bats and primates. But this will need to be expanded to, for example, small carnivores.

What do we know already?

Zoologists have known for decades that some of the most virulent viral infections are animal in origin. These viruses occur naturally and at low levels. In their natural animal hosts they are often not harmful.

Viruses are not autonomous. They require the host’s DNA to replicate. Many viruses are therefore species-specific and cannot replicate outside their natural host. But a random mutation in the right location in the virus’s DNA can allow the virus to establish in a new host species.

Perhaps the best-known example is HIV/AIDS, which is simian (chimpanzee) in origin. Here, the simian immunodeficiency virus successfully transitioned to humans – through contact with animal blood or meat – to become the human immunodeficiency virus or HIV, causing AIDS.

Since the first record of HIV-1 in humans, this virus has mutated several times. The two main types present in humans have different animal origins. HIV-1 is closely related to viruses found in chimpanzees and gorillas (great apes), while HIV-2 is more closely related to viruses in sooty mangabeys (Old World monkeys) in West Africa.

We’re therefore dealing with at least two independent host jump events, and possibly many more. Decades after HIV-1 was identified and sequenced from humans, we are still no closer to a vaccine, and an estimated 32 million people (at the end of 2018) have died from AIDS-related illnesses since the start of the pandemic.

Very little is known about the coronavirus – SARS-CoV-2 – that causes COVID-19, even though it isn’t the first time that a member of the coronavirus family has jumped from its natural animal host to humans. According to the National Foundation for Infection Diseases fact sheet, human coronaviruses were first identified in the 1960s. Seven coronaviruses that can infect humans have since been identified.

These have included MERS-CoV, causing Middle East respiratory syndrome, or MERS, and SARS-CoV, causing severe acute respiratory syndrome, or SARS. The current pandemic is the result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Initial ideas about SARS-CoV-2 were that it originated from two hosts – bats and later from pangolins. To date, the full genomes of more than 17,000 SARS-CoV-2 viruses have been sequenced, but the exact origin is still unknown.

This is important because to fully understand the properties of the virus, we need to know the animal host (so called patient zero). This information may be critical to developing vaccines.

It won’t be easy. There is a very real possibility that the origin of SARS-CoV-2 may be a bat. But they are difficult to work on, given their habits of nocturnality, flight, and roosting in places that are hard to access. And there’s a strong possibility that bat diversity is underestimated. This is a real problem given that viruses may be species-specific.

Focus areas

There are some simple steps that zoologists are following.

The first is to home in on data that we can collect easily but which will still provide relevant information.

One example is faeces. Defecation is near universal in the animal kingdom, and zoologists have been cashing in on the rich data that faeces can deliver. We collect, store and analyse faeces for parasite load, hormonal data and DNA, relating these data to the health, behaviour and social structures of species.

But this source of information can be mined for much more by, for example, taking advantage of advances in metagenomic sequencing. This means we can now use faeces – properly stored and prepared – to identify entire viromes in the wildlife hosts, enabling us to proactively identify potential zoonotic viruses.

This requires zoologists to make connections through linkages with virology and medical laboratories to provide multidisciplinary perspectives.

Another rich area that we can use more extensively is the massive volume of animal movement data. It has spawned a proliferation of websites dedicated to the sharing of GPS points tracking everything from ants to elephants, often using animal collars that transmit location signals. We understand that animal movement patterns can affect disease outbreaks and spillovers to humans; can’t we use these resources more proactively?

It’s vital for zoologists to collaborate with social scientists too, to understand human interaction with wildlife better. Ultimately, the jumps from animal to human are driven by us, and our behaviour. We can – and should – use the existing connections that many zoologists have with local communities to do more than reduce human-wildlife conflict.

This information provides rich pickings for zoologists as we battle to unravel the latest mysteries of what happens within species and between species.The Conversation

Aliza le Roux, Associate Professor, University of the Free State and Bettine van Vuuren, Professor, University of Johannesburg

This article is republished from The Conversation under a Creative Commons license. Read the original article.