Why the Moon is such a cratered place


Look at the circular patterns on the Moon’s surface, as seen from Earth.
Flickr/Bob Familiar, CC BY

Katarina Miljkovic, Curtin University

Look up on a clear night and you can see some circular formations on the face of our lunar neighbour. These are impact craters, circular depressions found on planetary surfaces.

About a century ago, they were suspected to exist on Earth but the cosmic origin was often met with suspicion and most geologists believed that craters were of volcanic origin.

Around 1960, the American astrogeologist Gene Shoemaker, one of the founders of planetary science, studied the dynamics of crater formation on Earth and planetary surfaces. He investigated why they – including our Moon – are so cratered.




Read more:
Five ethical questions for how we choose to use the Moon


Images from Apollo

By 1970, there were more than 50 craters discovered on Earth but that work was still considered controversial, until pictures of the lunar surface brought by the Apollo missions confirmed that impact cratering is a common geological process outside Earth.

The crater Daedalus on the far side of the Moon as seen from the Apollo 11 spacecraft in lunar orbit. Daedalus has a diameter of about 80km.
NASA

Unlike Earth’s surface, the lunar surface is covered with craters. This is because Earth is a dynamic planet, and tectonics, volcanism, seismicity, wind and oceans all play against the preservation of impact craters on Earth.

It does not mean Earth – even Australia – has not been battered. We should have been hit by more rocks from space than the Moon has, simply because our planet is larger.

In contrast to Earth, our Moon has been inactive over long geological timescales and has no atmosphere, which has allowed the persistent impact cratering to remain over eons. The lunar cratering record spans its entire bombardment history – from the Moon’s very origins to today.

The big ones

The largest and oldest impact crater in the Solar system is believed to be on the Moon, and it is called the South Pole-Aitken basin, but we cannot see it from Earth because it is on the far side of the Moon. The Moon is tidally locked to Earth’s rotation and the same side always faces toward us.

The South Pole-Aitken Basin shown here in the elevation data (not natural colours) with the low center in dark blue and purple and mountains on its edge, remnants of outer rings, in red and yellow.
NASA/GSFC/University of Arizona

But this crater, more than 2,000km across, is thought to predate any other large impact bombardment that occurred during lunar evolution. Impact simulations suggested it was formed by a 150-250km asteroid hurtling into the Moon at 15-20km per second!

From Earth, the human eye can observe areas of different shades of grey on the surface of the Moon facing us. The dark areas are called maria, and can be up to more than 1,000km across.

They are volcanic deposits that flooded depressions created by the formation of the large impact basins on the Moon. These volcanic eruptions were active for millions of years after these impacts occurred.

My favourite is the Orientale impact basin, the youngest of the large impact craters on the Moon, but still estimated to have formed “only” about 3.7 billion years ago.

Orientale basin is about 930km wide and has three distinct rings, which form a bullseye-like pattern. This view is a mosaic of images from NASA’s Lunar Reconnaissance Orbiter.
NASA/GSFC/Arizona State University

No other large impact event has occurred on the Moon since then. This is a good sign, because it implies there were no very large impacts occurring on Earth either after this time in evolutionary history. (The asteroid that wiped out the dinosaurs on Earth 66 million years ago was only about 10-15km in size and left a crater larger than 150km in size, which was substantial enough to cause a mass extinction.)

As seen from Earth

With a small telescope, or fancy binoculars, you can check out some of the best-preserved complex craters on the Moon, such as the Tycho or Copernicus craters.

Tycho Crater is one of the most prominent craters on the Moon.
NASA/Goddard/Arizona State University

They are called complex craters because they are not entirely bowl-shaped, but are a bit shallower and include a peak in the centre of the crater as a consequence of the material collapsing into the hole made during impact. Tycho and Copernicus are both 80-100km across but have spectacular central peaks and prominent “ejecta rays” – areas where material was ejected across the lunar surface after an impact.

The formation of these craters excavated underlying material that was brighter than the actual surface. This is because lunar surface is subjected to space weathering, which causes surface rocks to darken.

Still a target for impacts

The Apollo 12, 14, 15, and 16 missions placed several seismic stations on the Moon between 1969 and 1972, creating the first extraterrestrial seismic network (ALSEP). During one year of operations, more than 1,000 seismic events were recorded, of which 10% were associated with meteoroids impacts.

So the Moon is still being hit by objects, albeit mostly tiny ones. But as there is no atmosphere on the Moon, there is no gas to help burn up these rocks from space and stop them smashing into the Moon.




Read more:
Target Earth: how asteroids made an impact on Australia


The seismic network was functional until it was switched off in 1977, in preparation for new space missions. No one expected that the next fully operational extraterrestrial seismometer would not be placed on a planetary surface (Mars) until 40 years later.

Nowadays, from Earth, using a small telescope (and armed with a little patience), you can see so-called “impact flashes”, which are small meteorite impacts on the lunar surface that is facing us.

You need to be quick to see the flashes – watch for the green boxes.

Thanks to the atmosphere on Earth, similar-sized rocks from space cannot make an impact here because they tend to predominantly burn up, but on the Moon they crash into the soil and release its kinetic energy of the impact via bright thermal emission.The Conversation

Katarina Miljkovic, ARC DECRA fellow, Curtin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Lights in the sky from Elon Musk’s new satellite network have stargazers worried



The panel of 60 Starlink satellites just before they were released to go into orbit around Earth.
Official SpaceX Photos

Michael J. I. Brown, Monash University

UFOs over Cairns. Lights over Leiden. Glints above Seattle. What’s going on?

Starlink satellites travel silently across the skies of Leiden.

The launch of 60 Starlink satellites by Elon Musk’s SpaceX has grabbed the attention of people around the globe. The satellites are part of a fleet that is intended to provide fast internet across the world.

Improved internet services sound great, and Musk is reported to be planning for up to 12,000 satellites in low Earth orbit. But this fleet of satellites could forever change our view of the heavens.

Will we lose the night sky to city lights and satellites?
Jeff Sullivan, CC BY-NC-ND

Starlink’s ambitious mission

Starlink is an ambitious plan to use satellites in low Earth orbit (about 500km up) to provide global internet services.




Read more:
What caused the fireballs that lit up the sky over Australia?


This is different from the approach previously used for most communication satellites, in which larger individual satellites were placed in high geosynchronous orbits – that stay in an apparently fixed position above the Equator (about 36,000km up).

Communications with satellites in geosynchronous orbits often require satellite dishes, which you can see on the sides of residential apartment buildings. Communication with satellites in low Earth orbit, which are much closer, won’t require such bulky equipment.

But the catch with satellites in low Earth orbit, which move quickly around the world, is they can only look down on a small fraction of the globe, so to get global coverage you need many satellites. The Iridium satellite network used this approach in the 1990s, using dozens of satellites to provide global phone and data services.

Starlink is far more ambitious, with 1,600 satellites in the first phase, increasing to 12,000 satellites during the mid-2020s. For comparison, there are roughly 18,000 objects in Earth orbit that are tracked, including about 2,000 functioning satellites.

Lights in the sky

It’s not unusual to see satellites travelling across the twilight sky. Indeed, there’s a certain thrill to seeing the International Space Station pass overhead, and to know there are people living on board that distant light. But Starlink is something else.

The first 60 satellites, launched by SpaceX last week, were seen travelling in procession across the night sky. Some people knew what they were seeing, but the silent procession of light also generated UFO reports. If you’re lucky, you may see them pass across your skies tonight.

If the full constellation of satellites is launched, hundreds of Starlink satellites will be above the horizon at any given time. If they are visible to the unaided eye, as suggested by initial reports, they could outnumber the brightest natural stars visible to the unaided eye.

Astronomers’ fears were not put to rest by Musk’s tweets:

Satellites are very definitely visible at night, particularly in the hours before dawn and after sunset, as they are high enough to be illuminated by the Sun. The Space Station’s artificial lighting is effectively irrelevant to its visibility.

In areas near the poles, including Canada and northern Europe, satellites in low Earth orbit can be illuminated throughout the night during the summer months.

Hundreds of satellites being visible to the unaided eye would be a disaster. They would completely ruin our view of the night sky. They would also contaminate astronomical images, leaving long trails across otherwise unblemished images.

The US$466 million Large Synoptic Survey Telescope, based in Chile, is an 8-metre aperture telescope with a 3,200-megapixel camera. It’s designed to rapidly survey the sky during the 2020s.

With the full constellation of Starlink satellites, many images taken with this telescope will contain a Starlink satellite. Longer exposures could contain dozens of satellite streaks.

Dark skies or darkened hopes?

Is there any cause for optimism? Yes and no.

Musk has produced some amazing feats of technology, such as the SpaceX Falcon and Tesla cars, but he’s also disappointed some on other projects, such as the Hyperloop tunnel transport plan.




Read more:
A guide to ensure everyone plays by the same military rules in space: the Woomera Manual


While Starlink certainly blew up on Twitter, for now at least, Musk is 11,940 satellites short of his 12,000.

Also, initial reports may have overestimated the brightness of the Starlink satellites, with the multiple satellites closely clustered together being confused with one satellite.

While some reports have indicate binoculars are needed to see the individual satellites, they also report that Starlink satellites flare, momentarily becoming brighter than any natural star.

If the individual satellites usually are too faint to be seen with the unaided eye, that would at least preserve the natural wonder of the sky. But professional astronomers like myself may need to prepare for streaky skies ahead. I can’t say I’m looking forward to that.The Conversation

Michael J. I. Brown, Associate professor in astronomy, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

What caused the fireballs that lit up the sky over Australia?



One of the fireballs (highlighted by the red circle) captured over the Northern Territory.
NT Emergency Services

Jonti Horner, University of Southern Queensland

Over the past few days a pair of spectacular fireballs have graced Australia’s skies.

The first, in the early hours of Monday, May 20, flashed across the Northern Territory, and was seen from both Tennant Creek and Alice Springs, more than 500km apart.

The second came two days later, streaking over South Australia and Victoria.

Such fireballs are not rare events, and serve as yet another reminder that Earth sits in a celestial shooting gallery. In addition to their spectacle, they hold the key to understanding the Solar system’s formation and history.

Crash, bang, boom!

On any clear night, if you gaze skyward long enough, you will see meteors. These flashes of light are the result of objects impacting on our planet’s atmosphere.




Read more:
Look up! Your guide to some of the best meteor showers for 2019


Specks of debris vaporise harmlessly in the atmosphere, 80-100km above our heads, all the time – about 100 tons of the stuff per day.

The larger the object, the more spectacular the flash. Where your typical meteor is caused by an object the size of a grain of dust (or, for a particularly bright one, a grain of rice), fireballs like those seen this week are caused by much larger bodies – the size of a grapefruit, a melon or even a car.

Such impacts are rarer than their tiny siblings because there are many more small objects in the Solar system than larger bodies.

Moving to still larger objects, you get truly spectacular but rare events like the incredible Chelyabinsk fireball in February 2013.

That was probably the largest impact on Earth for 100 years, and caused plenty of damage and injuries. It was the result of the explosion of an object 10,000 tonnes in mass, around 20 metres in diameter.

On longer timescales, the largest impacts are truly enormous. Some 66 million years ago, a comet or asteroid around 10km in diameter ploughed into what is now the Yucatan Peninsula, Mexico. The result? A crater some 200km across, and a mass extinction that included the dinosaurs.

Even that is not the largest impact Earth has experienced. Back in our planet’s youth, it was victim to a truly cataclysmic event, when it collided with an object the size of Mars.

When the dust and debris cleared, our once solitary planet was accompanied by the Moon.

The story behind the formation of the Moon.

Impacts that could threaten life on Earth are, thankfully, very rare. While scientists are actively searching to make sure no extinction-level impacts are coming in the near future, it really isn’t something we should lose too much sleep about.

Smaller impacts, like those seen earlier this week, come far more frequently – indeed, footage of another fireball was reported earlier this month over Illinois in the United States.

In other words, it is not that unusual to have two bright fireballs in the space of a couple of days over a country as vast as Australia.

Pristine relics of planet formation

These bright fireballs can be an incredible boon to our understanding of the formation and evolution of the Solar system. When an object is large enough, it is possible for fragments (or the whole thing) to penetrate the atmosphere intact, delivering a new meteorite to our planet’s surface.

Meteorites are incredibly valuable to scientists. They are celestial time capsules – relatively pristine fragments of asteroids and comets that formed when the Solar system was young.

Most meteorites we find have lain on Earth for long periods of time before their discovery. These are termed “finds” and while still valuable, are often degraded and weathered, chemically altered by our planet’s wet, warm environment.

By contrast, “falls” (meteorites whose fall has been observed and that are recovered within hours or days of the event) are far more precious. When we study their composition, we can be confident we are studying something ancient and pristine, rather than worrying that we’re seeing the effect of Earth’s influence.

Tracking the fireballs

For this reason, the Australian Desert Fireball Network has set up an enormous network of cameras across our vast continent. These cameras are designed to scour the skies, all night, every night, watching for fireballs like those seen earlier this week.

If we can observe such a fireball from multiple directions, we can triangulate its path, calculate its motion through the atmosphere, and work out whether it is likely to have dropped a meteorite. Using that data, we can even work out where to look.

A successful meteorite search by the Australian Desert Fireball Network.

In addition to these cameras, the project can make use of any data provided by people who saw the event. For that reason, the Fireballs team developed a free app, Fireballs in the Sky.




Read more:
How we solved the mystery of Libyan desert glass


It contains great information about fireballs and meteor showers, and has links to experiments tied into the national curriculum. More importantly, it also allows its users to submit their own fireball reports.

As for this week’s fireball over southern Australia, NASA says it was probably caused by an object the size of a small car. As for finding any remains, they are now likely lost in the waters of the Great Australian Bight.The Conversation

NASA’s record on the location marked in the Great Australian Bight of one of the fireballs over Australia this week.
NASA

Jonti Horner, Professor (Astrophysics), University of Southern Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Koalas can learn to live the city life if we give them the trees and safe spaces they need


Edward Narayan, Western Sydney University

Australia is one of the world’s most highly urbanised nations – 90% of Australians live in cities and towns, with development concentrated along the coast. This poses a major threat to native wildlife such as the koala, which can easily fall victim to urban development as our cities grow. Huge infrastructure projects are planned for Australian cities in the coming few years.

The need to house more people – the Australian population is projected to increase to as much as 49.2 million by 2066 – is driving ever more urban development, much of it concentrated in our biggest cities on the east coast. This is bad news for the koala population, unless the species’ needs are considered as part of planning approvals and the creation of urban green spaces. The good news is that koalas can learn to live the “green city life” as long as they are provided with enough suitable gum trees in urban green spaces.




Read more:
Long-running battle ends in a win for residents, koalas and local council planning rules


Indeed, our newly published research, which analysed stress levels in wild koalas according to their habitat, reveals that koalas are the most stressed in rural and rural-urban fringe zones. This appears to be due to factors such as large bushfires, heatwave events, dog attacks, vehicle collision and human-led reduction of prime eucalyptus habitats. Koalas living in urban landscapes are less stressed as long as the city includes suitable green habitats.

If there are suitable trees, koalas can learn to live among us – this one is next to a school in South Australia.
Vince Brophy/Shutterstock

In other words, wild animals including the koala can adapt to co-exist with human populations. Their ability to do so depends on us giving them the space, time and freedom to make that adaptation. This means ensuring they can carry out, without undue pressures, the biological and physiological functions on which their survival depends.

Wildlife species that lack access to suitable green habitats in cities are at higher risk of death and local extinction. Having to move between fragmented patches of habitat increases the risks. Land clearing and habitat destruction for infrastructure projects and other urban development are compounding the major threats to koalas, such as being hit by vehicles or attacked by dogs.




Read more:
Koalas are feeling the heat, and we need to make some tough choices to save our furry friends


How does human pressure cause stress in wildlife?

Animals cope with stressful situations in their lives through very basic life-history adjustments and ecological mechanisms. These include changes in physiology and behaviour in response to stresses in their environment.

We can help make the environment more suitable for wildlife species by ensuring their basic needs for food, water and shelter are met. If animals are deprived of any of these necessities, they will show signs of stress.

So by subjecting wildlife to extrinsic stressors such as habitat clearance, climate change and pollution we are making it even more difficult for these animals to manage stress in their daily lives.

Basically any unwanted change to an animal’s environment that prevents it from performing its basic life-history functions, such as foraging and social behaviour, will cause stress.

So what can be done?

The koalas are telling us it’s a major problem when urban design is not green enough. Innovative solutions are needed!

Cities can do much more for wildlife conservation. Creating safe green spaces for wildlife is critical. Not just koalas but other wildlife such as birds, small mammals, reptiles and frogs can benefit immensely from urban green spaces.

Even in suburbs with plenty of green space, problems still arise because urban planning typically designs this space around access for human recreation and not for the wildlife that was living there before the housing development moved in.

Urban planning should always incorporate the planning of green spaces that are safe for wildlife. Providing wildlife crossings is part of the solution. Another important element is educational programs to alert drivers to the need to look out for koalas.




Read more:
Safe passage: we can help save koalas through urban design


Measures like this can minimise impacts on wildlife that faces the many challenges of adjusting to city life.The Conversation

Edward Narayan, Senior Lecturer in Animal Science, Western Sydney University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

To predict droughts, don’t look at the skies. Look in the soil… from space


Siyuan Tian, Australian National University and Albert Van Dijk, Australian National University

Another summer, another drought. Sydney’s water storages are running on empty, and desalinisation plants are being dusted off. Elsewhere, shrunken rivers, lakes and dams are swollen with rotting fish. Governments, irrigators and environmentalists blame each other for the drought, or just blame it on nature.

To be sure, Australia is large enough to usually leave some part of our country waiting for rain. So what exactly is a drought, and how do we know when we are in it?

This question matters, because declaring drought has practical implications. For example, it may entitle those affected to government assistance or insurance pay-outs.

But it is also a surprisingly difficult question. Droughts are not like other natural hazards. They are not a single extreme weather event, but the persistent lack of a quite common event: rain. What’s more, it’s not the lack of rain per se that ultimately affects us. The desert is a dry place but it cannot always be called in drought.

Ultimately, what matters are the impacts of drought: the damage to crops, pastures and environment; the uncontrollable fires that can take hold in dried-up forests and grasslands; the lack of water in dams and rivers that stops them from functioning. Each of these impacts is affected by more than just the amount of rain over an arbitrary number of months, and that makes defining drought difficult.




Read more:
Is Australia’s current drought caused by climate change? It’s complicated


Scientists and governments alike have been looking for ways to measure drought in a way that relates more closely to its impacts. Any farmer or gardener can tell you that you don’t need much rain, but you do need it at the right time. This is where the soil becomes really important, because it is where plants get their water.

Too much rain at once, and most of it is lost to runoff or disappears deep into the soil. That does not mean it is lost. Runoff helps fill our rivers and waterways. Water sinking deep into the soil can still be available to some plants. While our lawn withers, trees carry on as if there is nothing wrong. That’s because their roots dig further, reaching soil moisture that is buried deep.

A good start in defining and measuring drought would be to know how much soil moisture the vegetation can still get out of the soil. That is a very hard thing to do, because each crop, grass and tree has a different root system and grows in a different soil type, and the distribution of moisture below the surface is not easy to predict. Many dryland and irrigation farmers use soil sensors to measure how well their crops are doing, but this does not tell us much about the rest of the landscape, about the flammability of forests, or the condition of pastures.

Not knowing how drought conditions will develop, graziers face a difficult choice: sell their livestock or buy in feed?
Shutterstock

Soils and satellites

As it turns out, you need to move further away to get closer to this problem – into space, to be precise. In our new research, published in Nature Communications, we show just how much satellite instruments can tell us about drought.

The satellite instruments have prosaic names such as SMOS and GRACE, but the way they measure water is mind-boggling. For example, the SMOS satellite unfurled a huge radio antenna in space to measure very specific radio waves emitted by the ground, and from it scientists can determine how much moisture is available in the topsoil.

Even more amazingly, GRACE (now replaced by GRACE Follow-On) was a pair of laser-guided satellites in a continuous high-speed chase around the Earth. By measuring the distance between each other with barely imaginable accuracy, they could measure miniscule changes in the Earth’s gravitational field caused by local increases or decreases in the amount of water below the surface.

By combining these data with a computer model that simulates the water cycle and plant growth, we created a detailed picture of the distribution of water below the surface.

It is a great example showing that space science is not just about galaxies and astronauts, but offers real insights and solutions by looking down at Earth. It also shows why having a strong Australian Space Agency is so important.




Read more:
The lessons we need to learn to deal with the ‘creeping disaster’ of drought


Taking it a step further, we discovered that the satellite measurements even allowed us to predict how much longer the vegetation in a given region could continue growing before the soils run dry. In this way, we can predict drought impacts before they happen, sometimes more than four months in advance.

Map showing how many months ahead, on average, drought impacts can be predicted with good accuracy.
author provided

This offers us a new way to look at drought prediction. Traditionally, we have looked up at the sky to predict droughts, but the weather has a short memory. Thanks to the influence of ocean currents, the Bureau of Meteorology can sometimes give us better-than-evens odds for the months ahead (for example, the next three months are not looking promising), but these predictions are often very uncertain.

Our results show there is at least as much value in knowing how much water is left for plants to use as there is in guessing how much rain is on the way. By combining the two information sources we should be able to improve our predictions still further.

Many practical decisions hinge on an accurate assessment of drought risk. How many firefighters should be on call? Should I sow a crop in this paddock? Should we prepare for water restrictions? Should we budget for drought assistance? In future years, satellites keeping an eye on Earth will help us make these decisions with much more confidence.The Conversation

Siyuan Tian, Postdoctoral fellow, Australian National University and Albert Van Dijk, Professor, Water and Landscape Dynamics, Fenner School of Environment & Society, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.