Climate explained: how much of the world’s energy comes from fossil fuels and could we replace it all with renewables?


Shutterstock/Tsetso Photo

Robert McLachlan, Massey University


CC BY-ND

Climate explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz


How are fossil fuels formed, why do they release carbon dioxide and how much of the world’s energy do they provide? And what are the renewable energy sources that could replace fossil fuels?

Fossil fuels were formed over millions of years from the remains of plants and animals trapped in sediments and then transformed by heat and pressure.

Most coal was formed in the Carboniferous Period (360–300 million years ago), an age of amphibians and vast swampy forests. Fossilisation of trees moved enormous amounts of carbon from the air to underground, leading to a decline in atmospheric carbon dioxide (CO₂) levels — enough to bring the Earth close to a completely frozen state.

This change in the climate, combined with the evolution of fungi that could digest dead wood and release its carbon back into the air, brought the coal-forming period to an end.

Oil and natural gas (methane, CH₄) were formed similarly, not from trees but from ocean plankton, and over a longer period. New Zealand’s Maui oil field is relatively young, dating from the Eocene, some 50 million years ago.




Read more:
Climate explained: why carbon dioxide has such outsized influence on Earth’s climate


Burning buried sunshine

When fossil fuels are burnt, their carbon reacts with oxygen to form carbon dioxide. The energy originally provided by the Sun, stored in chemical bonds for millions of years, is released and the carbon returns to the air. A simple example is the burning of natural gas: one molecule of methane and two of oxygen combine to produce carbon dioxide and water.

CH₄ + 2 O₂ → CO₂ + 2 H₂O

Burning a kilogram of natural gas releases 15kWh of energy in the form of infrared radiation (radiant heat). This is a sizeable amount.

To stop continuously worsening climate change, we need to stop burning fossil fuels for energy. That’s a tall order, because fossil fuels provide 84% of all the energy used by human civilisation. (New Zealand is less reliant on fossil fuels, at 65%.)

Wind turbines on farm land in New Zealand
Wind energy is one of the renewable sources with the capacity to scale up.
Shutterstock/YIUCHEUNG

There are many possible sources of renewable or low-carbon energy: nuclear, hydropower, wind, solar, geothermal, biomass (burning plants for energy) and biofuel (making liquid or gaseous fuels out of plants). A handful of tidal power stations are in operation, and experiments are under way with wave and ocean current generation.

But, among these, the only two with the capacity to scale up to the staggering amount of energy we use are wind and solar. Despite impressive growth (doubling in less than five years), wind provides only 2.2% of all energy, and solar 1.1%.

The renewables transition

One saving grace, which suggests a complete transformation to renewable energy may be possible, is that a lot of the energy from fossil fuels is wasted.

First, extraction, refining and transport of fossil fuels accounts for 12% of all energy use. Second, fossil fuels are often burnt in very inefficient ways, for example in internal combustion engines in cars. A world based on renewable energy would need half as much energy in the first place.

The potential solar and wind resource is enormous, and costs have fallen rapidly. Some have argued we could transition to fully renewable energy, including transmission lines and energy storage as well as fully synthetic liquid fuels, by 2050.

One scenario sees New Zealand building 20GW of solar and 9GW of wind power. That’s not unreasonable — Australia has built that much in five years. We should hurry. Renewable power plants take time to build and industries take time to scale up.

Other factors to consider

Switching to renewable energy solves the problems of fuel and climate change, but not those of escalating resource use. Building a whole new energy system takes a lot of material, some of it rare and difficult to extract. Unlike burnt fuel, metal can be recycled, but that won’t help while building a new system for the first time.

Research concluded that although some metals are scarce (particularly cobalt, cadmium, nickel, gold and silver), “a fully renewable energy system is unlikely to deplete metal reserves and resources up to 2050”. There are also opportunities to substitute more common materials, at some loss of efficiency.

Engineers working on a wind turbine
Building a new system will require energy and resources.
Shutterstock/Jacques Tarnero

But many metals are highly localised. Half the world’s cobalt reserves are in the Democratic Republic of Congo, half the lithium is in Chile, and 70% of rare earths, used in wind turbines and electric motors, are in China.

Wasteful consumption is another issue. New technologies (robots, drones, internet) and economic growth lead to increased use of energy and resources. Rich people use a disproportionate amount of energy and model excessive consumption and waste others aspire to, including the emerging rich in developing countries.




Read more:
Renewable energy can save the natural world – but if we’re not careful, it will also hurt it


Research analysing household-level emissions across European countries found the top 1% of the population with the highest carbon footprints produced 55 tonnes of CO₂-equivalent emissions each, compared to a European median of 10 tonnes.

Scientists have warned about consumption by the affluent and there is vigorous debate about how to reduce it while preserving a stable society.

One way of turning these questions around is to start from the bottom and ask: what is the minimum energy required for basic human needs?

One study considered “decent living” to include comfortable housing, enough food and water, 10,000km of travel a year, education, healthcare and telecommunications for everyone on Earth — clearly not something we have managed to achieve so far. It found this would need about 4,000kWh of energy per person per year, less than a tenth of what New Zealanders currently use, and an amount easily supplied by renewable energy.

All that carbon under the ground was energy ripe for the picking. We picked it. But now it is time to stop.The Conversation

Robert McLachlan, Professor in Applied Mathematics, Massey University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New research reveals how Australia and other nations play politics with World Heritage sites



Shutterstock

Tiffany Morrison, James Cook University; Katrina Brown, University of Exeter; Maria Lemos, University of Michigan, and Neil Adger, University of Exeter

Some places are considered so special they’re valuable to all humanity and must be preserved for future generations. These irreplaceable gems – such as Machu Picchu, Stonehenge, Yosemite National Park and the Great Barrier Reef – are known as World Heritage sites.

When these places are threatened, they can officially be placed on the “List of World Heritage in Danger”. This action brings global attention to the natural or human causes of the threats. It can encourage emergency conservation action and mobilise international assistance.

However, our research released today shows the process of In Danger listings is being manipulated for political gain. National governments and other groups try to keep sites off the list, with strategies such as lobbying, or partial efforts to protect a site. Australian government actions to keep the Great Barrier Reef off the list are a prime example.

These practices are a problem for many reasons – not least because they enable further damage to threatened ecosystems.

Yosemite National Park is on the World Heritage list.
AAP/Kathryn Bermingham

What is the In Danger list?

World Heritage sites represent outstanding socioeconomic, natural and cultural values. Nations vie to have their sites included on the World Heritage list, which can attract tourist dollars and international prestige. In return, the nations are responsible for protecting the sites.

World Heritage sites are protected by an international convention, overseen by the United Nations body UNESCO and its World Heritage Committee. The committee consists of representatives from 21 of the 193 nations signed up to the convention.




Read more:
We just spent two weeks surveying the Great Barrier Reef. What we saw was an utter tragedy


When a site comes under threat, the World Heritage Committee can list the site as in danger of losing its heritage status. In 2014 for example, the committee threatened to list the Great Barrier Reef as In Danger – in part due to a plan to dump dredged sediment from a port development near the reef, as well as poor water quality, climate change and other threats. This listing did not eventuate.

An In Danger listing can attract help to protect a site. For example, the Galápagos Islands were placed on the list in 2007. The World Heritage Fund provided the Ecuadorian government with technical and financial assistance to restore the site’s World Heritage status. The work is not yet complete, but the islands were removed from the In Danger list in 2010.

Ecuador’s Galapagos Islands were removed from the In Danger list in 2010.
EPA

Political games

Our study shows political manipulation appears to be compromising the process that determines if a site is listed as In Danger.

We examined interactions between UNESCO and 102 national governments, from 1972 until 2019. We interviewed experts from the World Heritage Committee, government agencies and elsewhere, and combined this with global site threat data, UNESCO and government records, and economic and governance data.

We found at least 41 World Heritage sites, including the Great Barrier Reef, were at least once considered by the World Heritage Committee for the In Danger list, but weren’t put on it. This is despite these sites being reported by UNESCO as threatened, or more threatened, than those already on the In Danger list. And 27 of the 41 sites were considered for an In Danger listing more than once.

The number of sites on the In Danger list declined by 31.6% between 2001 and 2008, and has plateaued since. By 2019, only 16 of 238 ecosystems were certified as In Danger. In contrast, the number of ecosystems on the World Heritage list has increased steadily over the past 20 years.




Read more:
Explainer: what is the List of World Heritage in Danger?


So why is this happening? Our analysis showed the threat of an In Danger listing drives a range of government responses.

This includes governments complying only partially with World Heritage Committee recommendations or making only symbolic commitments. Such “rhetorical” adoption of recommendations has been seen in relation to the Three Parallel Rivers in China’s Yunnan province, the Western Caucasus in Russia and Australia’s Great Barrier Reef (explored in more detail below).

In other cases, threats to a site are high but attract limited attention and effort from either the national government or UNESCO. These sites include Halong Bay in Vietnam and the remote Tubbataha Reefs in the Philippines.

A 2004 amendment to the way the World Heritage Committee assesses In Danger listings means sites can be “considered” for inclusion rather than just listed, retained or removed. This has allowed governments to use delay tactics, such as in the case of Cameroon’s Dja Faunal Reserve. It has been considered for the In Danger list five times since 2011, but never listed.

Threats to Vietnam’s Halong Bay receive little attention.
Richard Vogel/AAP

Case in point: The Great Barrier Reef

In 2014 and 2015, the Australian government spent more than A$400,000 on overseas lobbying trips to keep the Great Barrier Reef off the In Danger list. The environment minister and senior bureaucrats travelled to most of the 21 countries on the committee, plus other nations, to argue against the listing. The mining industry also contributed to the lobbying effort.

The World Heritage Committee had asked Australia to develop a long-term plan to protect the reef. The Australian and Queensland governments appeared to comply, by releasing the Reef 2050 Plan in 2015.

But in 2018, a national audit and Senate inquiry found a substantial portion of finance for the plan was delivered – in a non-competitive and hidden process – to the private Great Barrier Reef Foundation, which had limited capacity and expertise. This casts doubt over whether the aims of the reef plan can be achieved.

Real world damage

Our study makes no recommendation on which World Heritage sites should be listed as In Danger. But it uncovered political manipulation that has real-world consequences. Had the Great Barrier Reef been listed as In Danger, for example, developments potentially harmful to the reef, such as the Adani coal mine, may have struggled to get approval.

Last year, an outlook report gave the reef a “very poor” prognosis and last summer the reef suffered its third mass bleaching in five years. There are grave concerns for the ecosystem’s ability to recover before yet another bleaching event.

Political manipulation of the World Heritage process undermines the usefulness of the In Danger list as a policy tool. Given the global investment in World Heritage over the past 50 years, it is essential to address the hidden threats to good governance and to safeguard all ecosystems.




Read more:
Australia reprieved – now it must prove it can care for the Reef


The Conversation


Tiffany Morrison, Professorial Research Fellow, ARC Centre of Excellence for Coral Reef Studies, James Cook University; Katrina Brown, Professor of Social Sciences, University of Exeter; Maria Lemos, Professor of Environmental Justice, Environmental Policy and Planning, Climate + Energy,, University of Michigan, and Neil Adger, Professor of Human Geography, University of Exeter

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Chief Scientist: we need to transform our world into a sustainable ‘electric planet’


Alan Finkel, Office of the Chief Scientist

I want you to imagine a highway exclusively devoted to delivering the world’s energy.

Each lane is restricted to trucks that carry one of the world’s seven large-scale sources of primary energy: coal, oil, natural gas, nuclear, hydro, solar and wind.

Our current energy security comes at a price, the carbon dioxide emissions from the trucks in the three busiest lanes: the ones for coal, oil and natural gas.

We can’t just put up roadblocks overnight to stop these trucks; they are carrying the overwhelming majority of the world’s energy supply.

But what if we expand clean electricity production carried by the trucks in the solar and wind lanes — three or four times over — into an economically efficient clean energy future?

Think electric cars instead of petrol cars. Think electric factories instead of oil-burning factories. Cleaner and cheaper to run. A technology-driven orderly transition. Problems wrought by technology, solved by technology.




Read more:
How to transition from coal: 4 lessons for Australia from around the world


Make no mistake, this will be the biggest engineering challenge ever undertaken. The energy system is huge, and even with an internationally committed and focused effort the transition will take many decades.

It will also require respectful planning and retraining to ensure affected individuals and communities, who have fuelled our energy progress for generations, are supported throughout the transition.

As Tony, a worker from a Gippsland coal-fired power station, noted from the audience on this week’s Q+A program:

The workforce is highly innovative, we are up for the challenge, we will adapt to whatever is put in front of us and we have proven that in the past.

This is a reminder that if governments, industry, communities and individuals share a vision, a positive transition can be achieved.

The stunning technology advances I have witnessed in the past ten years make me optimistic.

Renewable energy is booming worldwide, and is now being delivered at a markedly lower cost than ever before.

In Australia, the cost of producing electricity from wind and solar is now around A$50 per megawatt-hour.

Even when the variability is firmed with storage, the price of solar and wind electricity is lower than existing gas-fired electricity generation and similar to new-build coal-fired electricity generation.

This has resulted in substantial solar and wind electricity uptake in Australia and, most importantly, projections of a 33% cut in emissions in the electricity sector by 2030, when compared to 2005 levels.

And this pricing trend will only continue, with a recent United Nations report noting that, in the last decade alone, the cost of solar electricity fell by 80%, and is set to drop even further.

So we’re on our way. We can do this. Time and again we have demonstrated that no challenge to humanity is beyond humanity.

Ultimately, we will need to complement solar and wind with a range of technologies such as high levels of storage, long-distance transmission, and much better efficiency in the way we use energy.

But while these technologies are being scaled up, we need an energy companion today that can react rapidly to changes in solar and wind output. An energy companion that is itself relatively low in emissions, and that only operates when needed.

In the short term, as Prime Minister Scott Morrison and energy minister Angus Taylor have previously stated, natural gas will play that critical role.

In fact, natural gas is already making it possible for nations to transition to a reliable, and relatively low-emissions, electricity supply.

Look at Britain, where coal-fired electricity generation has plummeted from 75% in 1990 to just 2% in 2019.

Driving this has been an increase in solar, wind, and hydro electricity, up from 2% to 27%. At the same time, and this is key to the delivery of a reliable electricity supply, electricity from natural gas increased from virtually zero in 1990 to more than 38% in 2019.

I am aware that building new natural gas generators may be seen as problematic, but for now let’s assume that with solar, wind and natural gas, we will achieve a reliable, low-emissions electricity supply.

Is this enough? Not really.

We still need a high-density source of transportable fuel for long-distance, heavy-duty trucks.

We still need an alternative chemical feedstock to make the ammonia used to produce fertilisers.

We still need a means to carry clean energy from one continent to another.

Enter the hero: hydrogen.

Hydrogen is abundant. In fact, it’s the most abundant element in the Universe. The only problem is that there is nowhere on Earth that you can drill a well and find hydrogen gas.

Don’t panic. Fortunately, hydrogen is bound up in other substances. One we all know: water, the H in H₂O.

We have two viable ways to extract hydrogen, with near-zero emissions.

First, we can split water in a process called electrolysis, using renewable electricity.

Second, we can use coal and natural gas to split the water, and capture and permanently bury the carbon dioxide emitted along the way.

I know some may be sceptical, because carbon capture and permanent storage has not been commercially viable in the electricity generation industry.

But the process for hydrogen production is significantly more cost-effective, for two crucial reasons.

First, since carbon dioxide is left behind as a residual part of the hydrogen production process, there is no additional step, and little added cost, for its extraction.

And second, because the process operates at much higher pressure, the extraction of the carbon dioxide is more energy-efficient and it is easier to store.

Returning to the electrolysis production route, we must also recognise that if hydrogen is produced exclusively from solar and wind electricity, we will exacerbate the load on the renewable lanes of our energy highway.

Think for a moment of the vast amounts of steel, aluminium and concrete needed to support, build and service solar and wind structures. And the copper and rare earth metals needed for the wires and motors. And the lithium, nickel, cobalt, manganese and other battery materials needed to stabilise the system.

It would be prudent, therefore, to safeguard against any potential resource limitations with another energy source.

Well, by producing hydrogen from natural gas or coal, using carbon capture and permanent storage, we can add back two more lanes to our energy highway, ensuring we have four primary energy sources to meet the needs of the future: solar, wind, hydrogen from natural gas, and hydrogen from coal.




Read more:
145 years after Jules Verne dreamed up a hydrogen future, it has arrived


Furthermore, once extracted, hydrogen provides unique solutions to the remaining challenges we face in our future electric planet.

First, in the transport sector, Australia’s largest end-user of energy.

Because hydrogen fuel carries much more energy than the equivalent weight of batteries, it provides a viable, longer-range alternative for powering long-haul buses, B-double trucks, trains that travel from mines in central Australia to coastal ports, and ships that carry passengers and goods around the world.

Second, in industry, where hydrogen can help solve some of the largest emissions challenges.

Take steel manufacturing. In today’s world, the use of coal in steel manufacturing is responsible for a staggering 7% of carbon dioxide emissions.

Persisting with this form of steel production will result in this percentage growing frustratingly higher as we make progress decarbonising other sectors of the economy.

Fortunately, clean hydrogen can not only provide the energy that is needed to heat the blast furnaces, it can also replace the carbon in coal used to reduce iron oxide to the pure iron from which steel is made. And with hydrogen as the reducing agent the only byproduct is water vapour.

This would have a revolutionary impact on cutting global emissions.

Third, hydrogen can store energy, not only for a rainy day, but also to ship sunshine from our shores, where it is abundant, to countries where it is needed.

Let me illustrate this point. In December last year, I was privileged to witness the launch of the world’s first liquefied hydrogen carrier ship in Japan.

As the vessel slipped into the water I saw it not only as the launch of the first ship of its type to ever be built, but as the launch of a new era in which clean energy will be routinely transported between the continents. Shipping sunshine.

And, finally, because hydrogen operates in a similar way to natural gas, our natural gas generators can be reconfigured in the future to run on hydrogen — neatly turning a potential legacy into an added bonus.

Hydrogen-powered economy

We truly are at the dawn of a new, thriving industry.

There’s a nearly A$2 trillion global market for hydrogen come 2050, assuming that we can drive the price of producing hydrogen to substantially lower than A$2 per kilogram.

In Australia, we’ve got the available land, the natural resources, the technology smarts, the global networks, and the industry expertise.

And we now have the commitment, with the National Hydrogen Strategy unanimously adopted at a meeting by the Commonwealth, state and territory governments late last year.

Indeed, as I reflect upon my term as Chief Scientist, in this my last year, chairing the development of this strategy has been one of my proudest achievements.

The full results will not be seen overnight, but it has sown the seeds, and if we continue to tend to them, they will grow into a whole new realm of practical applications and unimagined possibilities.


This is an edited extract of a speech to the National Press Club of Australia on February 12, 2020. The full speech is available here.The Conversation

Alan Finkel, Australia’s Chief Scientist, Office of the Chief Scientist

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia’s bushfire smoke is lapping the globe, and the law is too lame to catch it



Smoke form Australia’s bushfires could be seen from space. But who should be held to account for the problem?
NASA EARTH OBSERVATORY

Eric Kerr, National University of Singapore and Malini Sur, Western Sydney University

Smoke from Australia’s bushfires has travelled far beyond its origins. It crossed New Zealand and South America, and within days had drifted halfway around the globe. NASA predicted the smoke would complete a full circuit and arrive back where it started.

As climate change takes hold and global temperatures rise, bushfires are set to increase in severity and frequency. The underlying cause of the fires and resulting smoke haze are often numerous – spanning both natural variability and climate change caused by individuals, governments and corporations.

Legal and policy frameworks – local, national and international – fail to capture these diffused responsibilities. Despite the proliferation of climate-related laws in recent decades, bushfire smoke still largely escapes regulation and containment. In this new era of monster fires, our laws need a major rethink.

Smoke haze blanketing Sydney late last year.
NEIL BENNETT/AAP

A short history of smoke

Smoke is obviously not a new phenomenon – it has polluted Earth’s air since the invention of fire.

In Egypt and Peru, evidence of ancient soot has been found in the lung tissue of mummies, thought to be the result of humans inhaling smoke particles from wood heaters and elsewhere.

The Romans referred to the gravioris caeli (“heavy heaven”) and infamis aer (“infamous air”). Ancient Roman philosopher and statesman Seneca wrote to a friend of his relief at escaping the polluted city:

No sooner had I left behind the oppressive atmosphere of the city Rome and that reek of smoking cookers which pour out, along with clouds of ashes, all the poisonous fumes they’ve accumulated in their interiors whenever they’re started up, than I noticed the change in my condition.




Read more:
Even for an air pollution historian like me, these past weeks have been a shock


Smoke pollution grew worse during the Industrial Revolution, as coal-burning factories proliferated across Europe and the United States. In London, 12,000 people are believed to have died in the Great Smog of 1952.

In Australia too, air pollution, including from bushfire smoke, is not new. However laws to deal with it have traditionally targeted pollution from industry, transport, power generation, and vehicles. Until now, bushfire smoke has been seen as a natural phenomenon, outside human control.

Indonesian women wear protective masks as they perform a mass prayer for rain to combat the smoke haze and drought season in Indonesia.
AFRIANTO SILALAHI

Where to point the finger?

Australia’s fires are not the first to be felt far from their origin.

Slash-and-burn farming in Indonesia regularly spreads smoke across Southeast Asia. In September last year, winds reportedly carried the smoke north to Malaysia and Singapore, prompting schools to close and triggering a mass public health scare.

In 2018, smoke from wildfires on the west coast of the United States reportedly travelled to the east coast of the continent to states such as Missouri, Ohio, New York and Massachusetts.




Read more:
Watching our politicians fumble through the bushfire crisis, I’m overwhelmed by déjà vu


As climate change worsens, and so too the frequency and extent of bushfires, it is critical that all efforts are made to prevent smoke from being emitted in the first place, and spreading around the world. However this requires identifying those responsible – a slippery concept when climate change is involved.

The Bureau of Meteorology recently confirmed what many strongly suspected: climate change contributed to Australia’s hottest, driest year on record on 2019, which led to the extreme bushfire season.

Following the latest bushfire outbreak, some declared Prime Minister Scott Morrison and his government responsible for failing to take meaningful action on climate change.

Sharnie Moran and daughter Charlotte look on as thick smoke rises from a fire near Coffs Harbour, NSW.
Dan Peled/AAP

The federal and state governments and some quarters of the media in turn blamed others, such as arsonists and conservationists, for the fires – claims which were quickly discredited.

There is also a strong argument to hold corporations responsible for climate change – one analysis in 2017 found that just 100 companies were responsible for more than 71% of the world’s greenhouse gas emissions since 1988.

But whether we blame a particular government or other human actors, the current suite of international laws are insufficient for holding them to account.

The law has failed

The number of global climate change laws has increased 20-fold between 1997 and 2017, from 60 to 1,260.

But despite this proliferation, the world is not on track to limiting planetary warming to less than 1.5℃ this century – a threshold beyond which the worst climate change impacts, including uncontrollable bushfires, will be felt.




Read more:
What do Sydney and other cities have in common? Dust


This is because most of the laws and policies consist of “declarations” and soft law – that which is not legally binding, and so is easily ignored. Few deal with issues of restorative justice – until now a criminal law concept which involves repairing the harm caused by criminal behaviour.

Experts have argued that the idea could be applied to disasters, drawing all parties to come together to deal with its aftermath and implications for the future.

The United Nations, which last year released the first-ever assessment of global environmental rules, says weak enforcement was “a global trend that is exacerbating environmental threats” including climate change and pollution. It also pointed to the need to properly fund government agencies responsible for enforcing laws.

Beachgoers in Sydney amid smoke haze from bushfires in New South Wales.
STEVEN SAPHORE/AAP

Looking ahead

Many climate change impacts, such as sea level rise, are almost invisible. But bushfire smoke rapidly engulfs a city skyline. It travels beyond national borders and is impossible to ignore.

As fire seasons worsen, political leaders will come under increasing pressure to stem the emission and spread of bushfire smoke. Key to this will be stronger climate change laws and enforcement, which recognise that a bushfire in one country can quickly become the world’s problem.The Conversation

Eric Kerr, Lecturer, National University of Singapore and Malini Sur, Senior Research Fellow, Institute for Culture and Society, Western Sydney University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Battlefields around the world are finding new purpose as parks and refuges



Antietam National Battlefield, Maryland, site of a savage Civil War battle on Sept. 17, 1862.
NPS

Todd Lookingbill, University of Richmond and Peter Smallwood, University of Richmond

The horrors of war are all too familiar: lives lost, homes destroyed, entire communities forced to flee. Yet as time passes, places that once were sites of death and destruction can become peaceful natural refuges.

One of the deadliest battles fought on U.S. soil, for example, was the Battle of Gettysburg. Tens of thousands of men were killed or wounded in three days of fighting. Over 150 years later, millions of visitors have toured Gettysburg Battlefield.

Across the U.S., 25 national battlefield and military parks have been established to protect battlefield landscapes and memorialize the past. Increasingly, visitors to these sites are attracted as much by their natural beauty as their historical legacy.

Our new book, “Collateral Values: The Natural Capital Created by Landscapes of War,” describes the benefits to society when healthy natural habitats develop on former battlefields and other military landscapes, such as bases and security zones. Environmental scientist Gary Machlis coined the phrase “collateral values” – a spin on the military expression “collateral damage” – to describe the largely unintended and positive consequences of protecting these lands.

These benefits include opportunities for picnicking, hiking and bird watching. More importantly, former military lands can support wildlife conservation, reduce water and air pollution, enhance pollination of natural and agricultural areas and help regulate a warming climate.

Watershed adventure camp at Staunton River Battlefield State Park, Virginia.
Virginia State Parks, CC BY

From battlefields to parks

In addition to federally protected sites, hundreds of battlefields in the U.S. are preserved by states, local governments and nonprofits like the American Battlefield Trust. Collectively, these sites represent an important contribution to the nation’s public lands.

Preserved battlefields include old fort sites, like the 33 that have been designated public lands in Oklahoma and Texas, marking wars fought between European settlers and Native Americans. They also include coastal defense forts built in the first half of the 1800s along the Atlantic and Pacific seaboards. While some battlefield parks are quite large, others are small sites in urban settings.

Internationally, the United Kingdom has an active program to preserve its battlefields, some centuries old. Other Western European countries have preserved World War I and World War II battlefields.

For example, one of the most brutal battles of WWI was fought in Verdun, France. That trench warfare site is now 25,000 acres of regenerated forest that attracts more than a quarter-million visitors annually. It protects a biologically rich landscape, including wetlands, orchids, birds, bats, newts, frogs, toads, insects, mushrooms and “survivor trees” that still bear scars of war.

Landscape in Verdun Forest.
Lamiot, CC BY-SA

Borders: The Iron Curtain

The largest, most ambitious plan in Europe for transforming a military border centers on the Iron Curtain – a line of guard towers, walls, minefields and fences that stretched for thousands of miles, from Norway’s border with the Soviet Union above the Arctic Circle down to the Mediterranean coastal border between Greece and Albania.

Communist Russia and its allies claimed they had to build a system of military barriers to defend against the NATO alliance of Western European countries and the U.S. But keeping their own citizens in was equally as important. Hundreds died trying to escape.

The collapse of the USSR in 1991 ended the Cold War, and the utility of the Iron Curtain and associated military facilities. With the fall of the Berlin Wall that divided the city into halves, a reunified Germany began to develop its section of the Iron Curtain into a system of conservation areas and nature trails, known as the European Green Belt initiative.

One great challenge of this project was balancing the values of conserving nature while preserving the tragic historical legacy of conflict. Most efforts to build collateral values on former landscapes must grapple with this trade-off.

Iron Curtain Greenway: Europeans are creating a system of parks and natural areas stretching across the continent, all connected by the greenswards that have grown along the former Iron Curtain.
European Green Belt Association, CC BY

Other militarized borders around the globe are also becoming conservation sites. For example, the Demilitarized Zone between North and South Korea has been strictly off-limits for people for decades, allowing it to grow into the most important, albeit unofficial, biodiversity reserve on the Korean peninsula.

Similarly, forests have grown up in the extensive minefield created along the Iran-Iraq border during those nations’ war in the 1980s. These forests support Asian leopards and other rare wildlife species. There are proposals to formally protect them as nature reserves.

Hope after tragedy

As open space becomes scarce in many parts of the U.S., Civil War battlefield parks have become havens for grassland birds like this grasshopper sparrow.
NPS/Sasha Robinson

The ecosystems of protected areas, such as parks and preserves, provide vital benefits for humans and nature. Unfortunately, the world is in danger of losing at least one-third of its protected areas to development and other threats. Recognizing the collateral values that have developed on protected former battlefields and border zones may help reduce degradation and loss of these lands.

One recent study estimates that nearly 1 million square miles – 5% of the Earth’s dry land surface – is currently designated as military training areas. These zones could be protected with relatively little investment when combined with social, cultural and political goals, such as memorializing historical events, and could become ecologically valuable places.

No one should forget the brutality of the conflicts that gave rise to these landscapes. However, given the scale of threats to natural habitats around the world, conservationists cannot ignore opportunities to cultivate and preserve natural places – even those that arise from the horrors of war.

This article has been updated to provide the correct location of Antietam National Battlefield in Maryland.

Todd Lookingbill is a member of the American Association of Geographers

The association is a funding partner of The Conversation US.

[ Expertise in your inbox. Sign up for The Conversation’s newsletter and get a digest of academic takes on today’s news, every day. ]The Conversation

Todd Lookingbill, Associate Professor of Geography and the Environment, University of Richmond and Peter Smallwood, Associate Professor of Biology, University of Richmond

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New report shows the world is awash with fossil fuels. It’s time to cut off supply



Australia’s coal production is expected to jump by 34% to 2030, undercutting our climate efforts.
Nikki Short/AAP

Peter Christoff, University of Melbourne

A new United Nations report shows the world’s major fossil fuel producing countries, including Australia, plan to dig up far more coal, oil and gas than can be burned if the world is to prevent serious harm from climate change.

The report found fossil fuel production in 2030 is on track to be 50% more than is consistent with the 2℃ warming limit agreed under the Paris climate agreement. Production is set to be 120% more than is consistent with holding warming to 1.5℃ – the ambitious end of the Paris goals.

Australia is strongly implicated in these findings. In the same decade we are supposed to be cutting emissions under the Paris goals, our coal production is set to increase by 34%. This trend is undercutting our success in renewables deployment and mitigation elsewhere.


productiongap.org

Mind the production gap

The United Nations Environment Program’s Production Gap report, to which I contributed, is the first to assess whether current and projected fossil fuel extraction is consistent with meeting the Paris goals.

It reviewed seven top fossil fuel producers (China, the United States, Russia, India, Australia, Indonesia, and Canada) and three significant producers with strong climate ambitions (Germany, Norway, and the UK).




Read more:
Drought and climate change were the kindling, and now the east coast is ablaze


The production gap is largest for coal, of which Australia is the world’s biggest exporter. By 2030, countries plan to produce 150% more coal than is consistent with a 2℃ pathway, and 280% more than is consistent with a 1.5℃ pathway.

The gap is also substantial for oil and gas. Countries are projected to produce 43% more oil and 47% more gas by 2040 than is consistent with a 2℃ pathway.


productiongap.org

Keeping bad company

Nine countries, including Australia, are responsible for more than two-thirds of fossil fuel carbon emissions – a calculation based on how much fuel nations extract, regardless of where it is burned.

China is the world’s largest coal producer, accounting for nearly half of global production in 2017. The US produces more oil and gas than any other country and is the second-largest producer of coal.

Australia is the sixth-largest extractor of fossil fuels , the world’s leading exporter of coal, and the second-largest exporter of liquefied natural gas.




Read more:
The good, the bad and the ugly: the nations leading and failing on climate action


Prospects for improvement are poor. As countries continue to invest in fossil fuel infrastructure, this “locks in” future coal, oil and gas use.

US oil and gas production are each projected to increase by 30% to 2030, as is Canada’s oil production.

Australia’s coal production is projected to jump by 34%, the report says. Proposed large coal mines and ports, if completed, would represent one of the world’s largest fossil fuel expansions – around 300 megatonnes of extra coal capacity each year.


productiongap.org

The expansion is underpinned by a combination of ambitious national plans, government subsidies to producers and other public finance.

In Australia, tax-based fossil fuel subsidies total more than A$12 billion each year. Governments also encourage coal production by fast-tracking approvals, constructing roads and reducing royalty requirements, such as for Adani’s recently approved Carmichael coal mine in the Galilee Basin.

Ongoing global production loads the energy market with cheap fossil fuels – often artificially cheapened by government subsidies. This greatly slows the transition to renewables by distorting markets, locking in investment and deepening community dependency on related employment.

In Australia, this policy failure is driven by deliberate political avoidance of our national responsibilities for the harm caused by our exports. There are good grounds for arguing this breaches our moral and legal obligations under the United Nations climate treaty.

Protestors locked themselves to heavy machinery to protest the Adani coal mine in central Queensland.
Frontline Action on Coal

Cutting off supply

So what to do about it? As our report states, governments frequently recognise that simultaneously tackling supply and demand for a product is the best way to limit its use.

For decades, efforts to reduce greenhouse gas emissions have focused almost solely on decreasing demand for fossil fuels, and their consumption – through energy efficiency, deployment of renewable technologies and carbon pricing – rather than slowing supply.

While the emphasis on demand is important, policies and actions to reduce fossil fuels use have not been sufficient.

It is now essential we address supply, by introducing measures to avoid carbon lock-in, limit financial risks to lenders and governments, promote policy coherence and end government dependency on fossil fuel-related revenues.

Policy options include ending fossil fuel subsidies and taxing production and export. Government can use regulation to limit extraction and set goals to wind it down, while offering support for workers and communities in the transition.




Read more:
Australia could fall apart under climate change. But there’s a way to avoid it


Several governments have already restricted fossil fuel production. France, Denmark and New Zealand have partially or totally banned or suspended oil and gas exploration and extraction, and Germany and Spain are phasing out coal mining.

Australia is clearly a major contributor in the world’s fossil fuel supply problem. We must urgently set targets, and take actions, that align our future fossil fuel production with global climate goals.The Conversation

Peter Christoff, Associate Professor, School of Geography, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.