Australia’s first offshore wind farm bill was a long time coming, but here are 4 reasons it’s not up to scratch yet


Shutterstock

Madeline Taylor, Macquarie University and Tina Soliman Hunter, Macquarie UniversityAfter years of waiting, the federal government finally introduced Australia’s first offshore electricity legislation in parliament yesterday. The bill will establish a regulatory framework for the offshore wind industry, paving the way for more than ten proposed projects.

Australia’s wind resources are among the world’s best, comparable to the North Sea between Britain and Europe where offshore energy is an established industry. In fact, research from July found if all the proposed offshore wind farms were built, their combined energy capacity would be greater than all of Australia’s coal-fired power plants.

But Australia’s lack of legal framework has meant we’re yet to commission our first offshore wind farm.

The new legislation took years of stakeholder anticipation leading to public consultation in 2020, but upon first reading one is left a little wanting. We find four reasons the bill isn’t up to scratch yet, from its inadequate safety provisions to vague wording around Native Title rights and interests.

A huge opportunity

The International Renewable Energy Agency (IRENA) identifies offshore wind as key in the transition from fossil fuels to clean energy, calling for the world’s offshore wind capacity to increase ten-fold, to 45 gigawatts per year by 2050.

In line with IRENA’s position, many of Australia’s trading partners have ambitious targets for offshore wind, including the UK, US, European Union, Korea and Japan. For example, the UK’s target is to reach a total of 40 gigawatts of offshore wind energy by 2030.

This new bill is Australia’s attempt to join its partners. It will give offshore electricity projects the framework for construction, operation, maintenance, and more.

One project, for example, is the Star of the South, which plans to build an offshore wind farm off the coast of Gippsland in Victoria. This project has the potential to supply 20% of the state’s energy needs. Like Australia’s other 12 proposed offshore wind projects, it has been waiting on an appropriate regulatory framework to go ahead.




Read more:
Wind turbines off the coast could help Australia become an energy superpower, research finds


Offshore wind is essential to help Australia cut its greenhouse gas emissions and create a sustainable and affordable electricity market. Indeed, the explanatory memorandum that accompanies the bill notes that if passed, the legislation will establish certainty that investors crave, potentially leading to billions of dollars worth of investment.

Wind energy infrastructure projects will also create thousands of jobs. Recent estimates suggest the offshore wind industry could create as much as 8,000 jobs each year from 2030. The Star of the South alone expects to create 2,000 direct jobs in Victoria over its lifetime, including 200 ongoing local jobs.

But the bill doesn’t go far enough

This bill represents a first attempt to establish a world-class regulatory regime. But does it?

Well, first of all it didn’t get off to a good start. In 2020, the government committed to having the legislation settings and framework in place by mid 2021. This target was not delivered.

And upon closer examination of the bill, we find critical omissions compared to best practice in North Sea jurisdictions.

A ship outside turbines at sunset
Offshore wind is essential to help Australia cut its greenhouse gas emissions.
Shutterstock

1. Weak protections for the environment

To protect the environment, projects need to create a management plan that complies with requirements under the federal environment law. But this won’t ensure marine life is unharmed by enormous, noisy turbines.

According to a major, independent review earlier this year, Australia’s environment law is outdated and flawed.




Read more:
A major report excoriated Australia’s environment laws. Sussan Ley’s response is confused and risky


It only addresses select environmental issues. The law is far too broad to deal with the unique requirements of offshore wind turbines, which Australian waters have never experienced before.

For example, under the bill’s broad management plan requirements, many environmental issues such as underwater noise and impacts on fish spawning would likely not be addressed.

Compare this to jurisdictions in the North Sea. In the UK, offshore wind projects require a thorough strategic environmental assessment, detailing all possible environmental impacts.

2. Native Title holders lose out

Offshore energy project developers are prohibited from interfering with Native Title rights and interests. But the bill allows interference if it’s “necessary” for the for the “reasonable exercise” of project rights and obligations.

This raises a critical question — what is considered “necessary” and “reasonable”?

This vague wording could see projects go ahead when it conflicts with Aboriginal and Torres Strait Islander communities and their Native Title rights.




Read more:
Why most Aboriginal people have little say over clean energy projects planned for their land


3. Inadequate safety provisions

Offshore wind energy development holds inherent risks, such as transporting and constructing wind turbine components in hazardous environments, which are often subject to extreme weather. Without a solid safety framework, construction may lead to injuries or deaths, similar to those that have occurred in the North Sea.

Under the new legislation, the National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) would be appointed as the offshore wind regulator. NOPSEMA would oversee safety using the generic Work, Health and Safety Act 2011.

But the bill says parts of the Work, Health and Safety Act will need to be modified so they’re “fit for purpose”. It would require extra provisions, exclusions and workarounds, making the assurance of structures difficult.

Compare this to offshore petroleum operations, which get a bespoke safety framework , one NOPSEMA is already familiar with. Why isn’t one put in place for offshore wind farms?

Construction of an offshore turbine
Offshore wind construction workers may have to deal with extreme weather, putting them at risk.
Shutterstock

4. It may leave the community behind

In Denmark, offshore wind turbines are located less than 16 kilometres from the coastline. They’re obliged to offer at least 20% of ownership shares to local citizens.

But under Australia’s proposed bill, there are no explicit community benefit schemes. This is an important omission, because creating laws to increase community participation and engagement could reduce any risk of “not in my backyard” (Nimbyism) attitudes. It would also ensure hosting communities are actively involved early and frequently throughout the lifecycle of offshore wind projects.

In crafting best practice regulation coupled with community benefit schemes, the opportunities are limitless. A first step could be to create further public submission opportunities for communities to comment on the bill.

Offshore wind is our golden ticket to a reliable, affordable, and clean energy future. Investing in the offshore wind industry is a no-brainer for Australia, but it needs to be done right.




Read more:
A ‘100% renewables’ target might not mean what you think it means. An energy expert explains


The Conversation


Madeline Taylor, Senior Lecturer, Macquarie University and Tina Soliman Hunter, Professor of Energy and Natural Resources Law, Macquarie University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Wind turbines off the coast could help Australia become an energy superpower, research finds


Shutterstock

Sven Teske, University of Technology Sydney; Chris Briggs, University of Technology Sydney; Mark Hemer, CSIRO; Philip Marsh, University of Tasmania, and Rusty Langdon, University of Technology SydneyOffshore wind farms are an increasingly common sight overseas. But Australia has neglected the technology, despite the ample wind gusts buffeting much of our coastline.

New research released today confirms Australia’s offshore wind resources offer vast potential both for electricity generation and new jobs. In fact, wind conditions off southern Australia rival those in the North Sea, between Britain and Europe, where the offshore wind industry is well established.

More than ten offshore wind farms are currently proposed for Australia. If built, their combined capacity would be greater than all coal-fired power plants in the nation.

Offshore wind projects can provide a win-win-win for Australia: creating jobs for displaced fossil fuel workers, replacing energy supplies lost when coal plants close, and helping Australia become a renewable energy superpower.

offshore wind turbine from above
Australia’s potential for offshore wind rivals the North Sea’s.
Shutterstock

The time is now

Globally, offshore wind is booming. The United Kingdom plans to quadruple offshore wind capacity to 40 gigawatts (GW) by 2030 – enough to power every home in the nation. Other jurisdictions also have ambitious 2030 offshore wind targets including the European Union (60GW), the United States (30GW), South Korea (12GW) and Japan (10GW).

Australia’s coastal waters are relatively deep, which limits the scope to fix offshore wind turbines to the bottom of the ocean. This, combined with Australia’s ample onshore wind and solar energy resources, means offshore wind has been overlooked in Australia’s energy system planning.

But recent changes are producing new opportunities for Australia. The development of larger turbines has created economies of scale which reduce technology costs. And floating turbine foundations, which can operate in very deep waters, open access to more windy offshore locations.

More than ten offshore wind projects are proposed in Australia. Star of the South, to be built off Gippsland in Victoria, is the most advanced. Others include those off Western Australia, Tasmania and Victoria.

floating wind turbine
Floating wind turbines can operate in deep waters.
SAITEC

Our findings

Our study sought to examine the potential of offshore wind energy for Australia.

First, we examined locations considered feasible for offshore wind projects, namely those that were:

  • less than 100km from shore
  • within 100km of substations and transmission lines (excluding environmentally restricted areas)
  • in water depths less than 1,000 metres.

Wind resources at those locations totalled 2,233GW of capacity and would generate far more than current and projected electricity demand across Australia.

Second, we looked at so-called “capacity factor” – the ratio between the energy an offshore wind turbine would generate with the winds available at a location, relative to the turbine’s potential maximum output.

The best sites were south of Tasmania, with a capacity factor of 80%. The next-best sites were in Bass Strait and off Western Australia and North Queensland (55%), followed by South Australia and New South Wales (45%). By comparison, the capacity factor of onshore wind turbines is generally 35–45%.

Average annual wind speeds in Bass Strait, around Tasmania and along the mainland’s southwest coast equal those in the North Sea, where offshore wind is an established industry. Wind conditions in southern Australia are also more favourable than in the East China and Yellow seas, which are growth regions for commercial wind farms.

Map showing average wind speed
Average wind speed (metres per second) from 2010-2019 in the study area at 100 metres.
Authors provided

Next, we compared offshore wind resources on an hourly basis against the output of onshore solar and wind farms at 12 locations around Australia.

At most sites, offshore wind continued to operate at high capacity during periods when onshore wind and solar generation output was low. For example, meteorological data shows offshore wind at the Star of the South location is particularly strong on hot days when energy demand is high.

Australia’s fleet of coal-fired power plants is ageing, and the exact date each facility will retire is uncertain. This creates risks of disruption to energy supplies, however offshore wind power could help mitigate this. A single offshore wind project can be up to five times the size of an onshore wind project.

Some of the best sites for offshore winds are located near the Latrobe Valley in Victoria and the Hunter Valley in NSW. Those regions boast strong electricity grid infrastructure built around coal plants, and offshore wind projects could plug into this via undersea cables.

And building wind energy offshore can also avoid the planning conflicts and community opposition which sometimes affect onshore renewables developments.

Global average wind speed
Global average wind speed (metres per second at 100m level.
Authors provided



Read more:
Renewables need land – and lots of it. That poses tricky questions for regional Australia


Winds of change

Our research found offshore wind could help Australia become a renewable energy “superpower”. As Australia seeks to reduce its greenhouse has emissions, sectors such as transport will need increased supplies of renewable energy. Clean energy will also be needed to produce hydrogen for export and to manufacture “green” steel and aluminium.

Offshore wind can also support a “just transition” – in other words, ensure fossil fuel workers and their communities are not left behind in the shift to a low-carbon economy.

Our research found offshore wind could produce around 8,000 jobs under the scenario used in our study – almost as many as those employed in Australia’s offshore oil and gas sector.

Many skills used in the oil and gas industry, such as those in construction, safety and mechanics, overlap with those needed in offshore wind energy. Coal workers could also be re-employed in offshore wind manufacturing, port assembly and engineering.

Realising these opportunities from offshore wind will take time and proactive policy and planning. Our report includes ten recommendations, including:

  • establishing a regulatory regime in Commonwealth waters
  • integrating offshore wind into energy planning and innovation funding
  • further research on the cost-benefits of the sector to ensure Australia meets its commitments to a well managed sustainable ocean economy.

If we get this right, offshore wind can play a crucial role in Australia’s energy transition.




Read more:
Super-charged: how Australia’s biggest renewables project will change the energy game


The Conversation


Sven Teske, Research Director, Institute for Sustainable Futures, University of Technology Sydney; Chris Briggs, Research Principal, Institute for Sustainable Futures, University of Technology Sydney; Mark Hemer, Principal Research Scientist, Oceans and Atmosphere, CSIRO; Philip Marsh, Post doctoral researcher, University of Tasmania, and Rusty Langdon, Research Consultant, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Up to 90% of electricity from solar and wind the cheapest option by 2030: CSIRO analysis



Shutterstock

Paul Graham, CSIRO

With the cost of energy generated from wind and solar now less than coal, the share of Australia’s electricity coming from renewables has reached 23%. The federal government projects the share will reach 50% by 2030.

It is at this point that integrating renewables into the energy system becomes more costly.

We can add wind and solar farms at little extra cost when their share is low and other sources – such as coal and gas generators now – can compensate for their variability. At a certain point, however, there comes a need to invest in supporting infrastructure to ensure supply from mostly renewable generation can meet demand.

But by 2030, even with these extra costs, adding new variable renewable generation (solar and wind) to as high as a 90% share of the grid will still be cheaper than non-renewable options, according to new estimates from the CSIRO and Australian Energy Market Operator.

Calculating energy costs

International research, including from the International Renewable Energy Agency, suggests solar and wind power are now the cheapest new sources of electricity in most parts of the world.

Our estimates, made for the third annual “GenCost” report (short for generation cost), confirm this is also now the case in Australia.

We compare the cost of new-build coal, gas, solar photovoltaics (both small and large scale), solar-thermal, wind and a number of speculative options (such as nuclear).

What we’ve been able to more accurately estimate in the new report is the cost of integrating more and more renewable energy into the energy system, as coal and gas generators are retired.

The two key extra integration costs are energy storage and more transmission lines.




Read more:
Sure, no-one likes a blackout. But keeping the lights on is about to get expensive


Storage costs

For any system dominated by renewables, storing energy is essential.

Storage means renewable energy can be saved when it is overproducing relative to demand – for example, in the middle of the day for solar, or during extended windy conditions. Stored energy can then be used when renewables cannot meet demand – such as overcast days or at night for solar.

Among options being considered for large-scale investment in Australia are batteries and pumped hydro energy storage (using excess renewable power to pump water back up to dams to again drive hydroelectric turbines).


Capital costs of storage technologies in $/kWh (total cost basis). Aurecon and Entura are engingeering businesses who publish project cost estimates. AEMO ISP is the Australian Energy Market Operator’s Integrated System Plan, which also includes technology cost estimates.
CSIRO

Pumped hydro sites can provide storage for hours or days. There are three schemes in Australia: Talbingo and Shoalhaven in New South Wales, and Wivenhoe near Brisbane.

Battery costs have been falling steadily and tend to be most competitive for storage electricity for less than eight hours. South Australia’s big battery (officially known as the Hornsdale Power Reserve) is the most obvious example.

Transmission costs

The other key cost to integrate more renewable energy generation into the electricity grid is building more transmission lines. Right now those lines mostly run from coal and gas power stations near coal mines.

But this not where new large-scale renewable generation will be. Solar farms are best placed inland, where there is less cloud cover, and in the mid to northern regions of Australia. Wind farms are generally better located in elevated areas and in the southern regions. We’ll need to build new transmission links to these “renewable energy zones”.

Transmission links between the states in the National Electricity Market (Queensland, New South Wales, Australian Capital Territory, Victoria, Tasmania and South Australia) will need to be improved so they can better support each other if one or more are experiencing low renewable energy output.




Read more:
After two decades, the national electricity market is on its way out, and that’s alright


Total integration costs

So how much extra will it cost for Australia to have a higher share (up to 90%) of electricity from wind and solar (variable renewable energy)? The following graph summarises our findings based on 2030 cost projections.


Projected renewable generation and integration costs by variable renewable energy share in 2030.
Projected renewable energy generation and integration costs by variable renewable energy share in 2030.
CSIRO

The cost of generating energy from wind and solar (shown in light blue) is about A$40 per megawatt-hour (MWh). This is is slightly below current average market prices.

A higher share of renewable energy adds storage costs (in black) and transmission costs (grey and dark blue). These integration costs increase from A$4/MWh to A$20/MWh as the variable renewable energy share increases from 50% to 90%.

At 90% renewable energy, the total cost is A$63/MWh. But that’s still cheaper than the cost of new coal and gas-fired electricity generation, which is in the range of A$70 to A$90/MWh (under ideal assumptions of low fuel pricing and no climate policy risk).


The 2020-21 GenCost report is now in the formal consultation period with stakeholders including industry, government, regulators and academia. The final report is due to be published in March 2021.The Conversation

Paul Graham, Chief economist, CSIRO energy, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Forest Wind and Australia’s renewables revolution: how big clean energy projects risk leaving local communities behind



Shutterstock

Tom Morton, University of Technology Sydney; James Goodman, University of Technology Sydney; Katja Müller, Martin Luther University Halle-Wittenberg, and Riikka Heikkinen, University of Technology Sydney

On top of announcing three Renewable Energy Zones this week the Queensland Parliament paved the way for an exclusive deal to build one of the biggest onshore wind farms in the Southern Hemisphere.

With up to 226 wind turbines in state-owned pine plantations, the 1,200 megawatt Forest Wind project could power one in four Queensland homes and help the state meet its target of 50% renewable-generated electricity by 2030.

The turbines will be a minimum of three kilometres from the nearest town. Because they’re sited in an exotic pine plantation, impacts on native flora, fauna, and habitats will be minimised. At first sight, Forest Wind looks like a model project. But look a little closer, and Forest Wind embodies many of the contradictions at the heart of Australia’s renewable energy revolution.

The current pace of Australia’s energy transition is breathtaking. But big projects like Forest Wind need to take local communities with them, and build a social licence for the energy transition from the ground up.

A community ‘kept in the dark’

As our research in the German state of Brandenburg shows, building towers 160 metres high – that’s higher than the Sydney Harbour Bridge – anywhere near settlements tends to lead to community opposition and lengthy delays.

Affected communities are much more likely to accept a massive wind farm on their doorstep if they feel they’ve been listened to by project developers, and can see clear benefits.

The three-kilometre “exclusion zone” for Forest Wind is twice the 1,500 metre minimum distance from settlements required under Queensland law. And project developers argue its location amid dense pine trees will provide “a natural buffer between Forest Wind and local residences”.

Wind turbines with red tips
Wind turbines near Rosenthal Brandenburg. Our research in Germany found building wind farms near towns causes opposition and delays.
Lothar Michael Peter, Author provided

But local residents told a parliamentary committee in June they’d been kept in the dark about the project, claiming “it was kept secret from 2016 until the public announcement in December 2019”. They also expressed concern about its visual impact and proximity to bird migration corridors.

The developers and the state government seem to have followed the well-known and widely criticised “DAD” approach: Decide, Announce, Defend.

“DAD” may be common in current planning processes, but the people of the nearby Wide Bay community may feel that, so far, there’s not enough in it for them.

The Conversation contacted Forest Wind Holdings for a response to this article. A spokesperson said the project will provide the local community a long and ongoing opportunity to continually provide input.

Forest Wind is pleased to have received feedback from hundreds of people so far including at information days, online forums, letters and over the phone. […] Since the project’s announcement, COVID-19 has certainly impacted community consultation activities, as local halls have been closed and a planned wind farm tour has had to be cancelled.

Now that COVID-19 restrictions are easing, Forest Wind is establishing a Community Reference Group […] Forest Wind intends to work closely through the Community Reference Group to continue to understand the needs and interests of the local community and work in a collaborative and multi-stakeholder approach to address community concerns and develop initiatives that leverage the Project and deliver community benefits.

Few community benefits

The Forest Wind website lists no concrete community benefits, no benefit sharing programs, concrete training or education initiatives, and hardly any community engagement besides standard consultation meetings and newsletters.

Elsewhere it’s becoming common for government-led renewable energy auctions to stipulate socio-economic objectives other than just capacity or price. In Victoria, one preference was to use labour and components from the state. In the ACT, one outcome was wider benefit sharing in the form of community co-investment.




Read more:
Climate explained: are we doomed if we don’t manage to curb emissions by 2030?


The Queensland government has fast-tracked Forest Wind through its Exclusive Transactions Framework, which gives preferential treatment to large-scale infrastructure projects. In other words, it’s picked a winner.

Forest Wind Holdings did not have to go through a competitive tender or auction process. Given the sheer size of the project, the state government had plenty of scope to negotiate better-than-average benefits for Wide Bay and the state.

Then there’s a further issue: jobs. According to the project website, 50% of the jobs in the construction phase (around 200) and 90% during operations (about 50) can be filled by people in the Wide Bay region.

A Forest Wind spokesperson said there are “vast benefits” for the local people in Wide Bay, including job opportunities in the concrete and construction sector.

These are all real jobs, for which on-the-job training and on-the-job management and mentoring can benefit workers to skill-up in working on Forest Wind, on future wind farms, and increase the opportunity to apply skills and qualifications in other areas of the economy.

Forest Wind was originated by local Queenslanders and the development team are based in this local area of Queensland. Already there are real local jobs, with more local jobs to come as the project develops – this is a positive.

But local communities need to see more lasting job creation from big renewable projects, not just “the circus coming to town”.

Consulting with native title holders

One clearly innovative aspect of Forest Wind is the requirement for an Indigenous Land Use Agreement, which provides negotiation rights for titleholders and compensation. Under legislation passed this week, the developer must negotiate a land use agreement where native title exists, and “the project cannot proceed without the free and informed consent of these individuals and communities”.

Part of Forest Wind is located on native title lands held by the Butchulla People, whose native title is well-established. Another part is on the land of the Kabi Kabi people, whose native title claim is pending. Forest Wind states it is consulting with native title holders and looks forward to partnerships with them.




Read more:
Why most Aboriginal people have little say over clean energy projects planned for their land


In contrast, last year the Queensland government extinguished native title over land in the Galilee Basin to make way for the Adani coal mine.

And the Adani mine is now only expected to offer only 100 to 800 ongoing jobs.

So let’s be clear: we should applaud Queensland’s decision to throw its weight behind the energy transition.

A recent report estimates that, with the right stimulus measures now, by 2030 there could be 13,000 Queenslanders working long-term in the renewable sector, and tens of thousands more short term jobs in construction.

Some 75% of those jobs would be in regional Queensland. The challenge is to ensure enough of them go to regions like Wide Bay.

And at a national level, Australia should look to Germany as a model.

Community energy projects

Renewables now employ 304,000 people in Germany. That compares with about 60,000 in the coal industry.

Germany built its energy transition over 30 years. The German experience shows how fostering citizen involvement and ownership will strengthen long-term social acceptance for renewable energy.

This means encouraging community energy, energy cooperatives, community owned retailers or community-based Virtual Power Plants. Community energy projects are estimated to have higher employment impacts and can better prioritise local contractors than corporate-led projects.

A greater focus on energy democracy would build a stronger foundation for the energy transition Australia has to have.




Read more:
Really Australia, it’s not that hard: 10 reasons why renewable energy is the future


The Conversation


Tom Morton, Associate Professor, Journalism, Stream Leader, Climate Justice Research Centre, University of Technology Sydney; James Goodman, Professor in Political Sociology, University of Technology Sydney; Katja Müller, Postdoctoral Researcher in Anthropology, Martin Luther University Halle-Wittenberg, and Riikka Heikkinen, PhD Candidate, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why is the Australian energy regulator suing wind farms – and why now?



Michael Coghlan/Flickr, CC BY-SA

Samantha Hepburn, Deakin University

The Australian Energy Regulator (AER) is suing four of the wind farms involved in the 2016 South Australian blackout – run by AGL Energy, Neoen Australia, Pacific Hydro, and Tilt Renewables – alleging they breached generator performance standards and the national electricity rules.

These proceedings appear to contradict the conclusions of a 2018 report which said while the AER had found some “administrative non-compliance”, it did not intend to take formal action given the “unprecedented circumstances”.




Read more:
What caused South Australia’s state-wide blackout?


However the AER has since said this report focused on the lead-up and aftermath of the blackout, not the event itself. The case hinges on whether the wind farms failed to provide crucial information during the blackout which hindered recovery.

In particular, the AER is arguing the software protecting the wind farms should have been able to cope with voltage disturbances and provide continuous energy supply. On the face of it, however, this will be extremely difficult to prove.

Rehashing the 2016 blackout

The 2016 South Australian blackout was triggered by a severe storm that hit the state on September 28. Tornadoes with wind speeds up to 260 km/h raced through SA, and a single-circuit 275-kilovolt transmission line was struck down.




Read more:
Baffled by baseload? Dumbfounded by dispatchables?
Here’s a glossary of the energy debate



After this, 170km away, a double-circuit 275kV transmission line was lost. This transmission damage caused the lines to trip and a series of subsequent faults resulted in six voltage dips on the South Australian grid at 4.16pm.

As the faults escalated, eight wind farms in SA had their protection settings activated. This allowed them to withstand the voltage dip by automatically reducing power. Over a period of 7 seconds, 456 megawatts of power was removed. This reduction caused an increase in power to flow through the Heywood interconnector. This in turn triggered a protection mechanism for the interconnecter that tripped it offline.

Once this happened, SA became separated from the rest of the National Energy Market (NEM), leaving far too little power to meet demand and blacking out 850,000 homes and businesses. A 2017 report found once SA was separated from the NEM, the blackout was “inevitable”.




Read more:
South Australian blackout: renewables aren’t a threat to energy security, they’re the future


What went wrong at the wind farms?

The question then becomes, is there any action the wind farms could reasonably have taken to stay online, thus preventing the overloading of the Heywood interconnector?

The regulator is arguing the operators should have let the market operator know they could not handle the disruption caused by the storms, so the operator could make the best decisions to keep the grid functioning.

Wind farms, like all energy generators in Australia, have a legal requirement to meet specific performance standards. If they fall short in a way that can materially harm energy security, they have a further duty to inform the operator immediately, with a plan to remedy the problem.

To determine whether a generator has complied with these risk management standards, a range of factors are considered. These include:

  • the technology of the plant,
  • whether its performance is likely to drift or degrade over a particular time frame,
  • experience with the particular generation technology,
  • the connection point arrangement that is in place. A generator will have an arrangement with a transmission network service provider (TNSP) that operates the networks that carry electricity between generators and distribution networks. TNSP’s advise the NEM of the capacity of their transmission assets so that they can be operated without being overloaded.
  • the risk and costs of different testing methods given the relative size of the plant.

Plenty of blame to go around

The series of events leading up to the 2016 blackout was extremely difficult to anticipate. There were many factors, and arguably all participants were involved in different ways.

  • The Heywood interconnector was running at full capacity at the time, so any overload may have triggered its protective mechanism.

  • The transmission lines were damaged by an unprecedented 263 lightning strikes in five minutes.

  • The market operator itself did not adopt precautionary measures such as reducing the load on the interconnector, or providing a clearer warning to electricity generators.

Bearing this in mind, the federal court will be asked to determine whether the wind farms complied with their generator performance standards and if not, whether this breach had a “material adverse effect” on power security.

This will be difficult to prove, because even if the generator standards require the wind farms to evaluate the point at which their protective triggers activated, it is unlikely the number of faults, the severity of the voltage dip, and the impact of the increased power flow on the Heywood interconnector could have been anticipated.




Read more:
FactCheck: does South Australia have the ‘highest energy prices’ in the nation and ‘the least reliable grid’?


The idea AEMO could have prevented the blackout if the wind farms had alerted it to the disruptive potential of their protective triggers is probably a little remote.

None of the participants could have foreseen the series of interconnected events leading to the blackout. Whilst lessons can be learned, laying blame is more complex. And while compliance with standards and rules is important, in this instance, it is unlikely that it would have changed the outcome.The Conversation

Samantha Hepburn, Director of the Centre for Energy and Natural Resources Law, Deakin Law School, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Taller, faster, better, stronger: wind towers are only getting bigger



Wind towers are getting taller.
Shutterstock

Con Doolan, UNSW

Former Australian Greens leader Bob Brown made headlines this week after he objected to a proposed wind farm on Tasmania’s Robbins Island. The development would see 200 towers built, each standing 270 metres from base to the tip of their blades.

Leaving aside the question of the Robbins Island development, these will be extraordinarily tall towers. However, they fit right in with the current trend for wind turbines.




Read more:
Wind and solar cut rather than boost Australia’s wholesale electricity prices


Wind turbines come in many designs, but the most common is the so-called “horizontal axis” kind, which look like giant fans on poles. This type of turbine is highly efficient at turning the energy in the wind into electrical energy.

Keen observers will have noticed that these turbines have been gaining in size over the years. In the 1990s, wind turbines typically had hub heights and rotor diameters of the order of 30m. Today, hub heights and rotor diameters are pushing well past 100m.



Shutterstock/The Conversation

Bigger is better

When it comes to wind turbines, bigger is definitely better. The bigger the radius of the rotor blades (or diameter of the “rotor disc”), the more wind the blades can use to turn into torque that drives the electrical generators in the hub. More torque means more power. Increasing the diameter means that not only more power can be extracted, but it can be done so more efficiently.

Larger and longer turbine blades mean greater aerodynamic efficiency. Creating more power in one turbine means less energy is lost as it is moved into the transmission system, and from there into the electrical generator. The economies of scale provide an overwhelming push for wind energy companies to develop larger rotor blades.




Read more:
Are public objections to wind farms overblown?


Wind turbines are also growing taller because of the way wind travels around the world. Because air is viscous (like very thin honey) and “sticks” to the ground, the wind velocity at higher altitudes can be many times higher than at ground level.

Hence it is advantageous to put the turbine high in the sky where there is more energy to extract. Hilly terrain (like a mountain ridge) may also distort the wind, requiring engineers to design the wind turbines to be even taller to catch the wind. Wind turbines used offshore are generally larger and taller because of the higher levels of wind energy available at sea.

Typically, onshore turbines (most common in Australia) have blades between 40m and 90m long. Tower heights are usually in the range of 150m. Offshore turbines (those situated at sea and common in Europe) are much larger.

Offshore turbines are typically much larger than onshore towers.
Shutterstock

One of the largest wind turbine designs in the world, General Electric’s offshore 12-megawatt Haliade-X, has 107m blades and a total height of 260m. As a comparison, Sydney’s Centrepoint tower is 309m tall.

If the Robbins Island turbines are indeed built to 270m, as reported in the media, they would eclipse General Electric’s behemoths. I cannot speak to the likelihood of this, but I would assume engineers will have to select the best turbine for the prevailing wind conditions and existing infrastructure.

Challenging heights

The quest for bigger and taller turbines comes with its fair share of engineering challenges.

Longer blades are more flexible than shorter ones, which can create vibration. If not controlled, this vibration affects performance and reduces the life of the blades and anything they are attached to, such as the gearbox or generator.

Materials and manufacturing techniques are constantly being refined to create longer, and longer-lasting, turbine blades.

The longer the turbine’s blades, the more pressure is put on internal mechanisms.
Shutterstock

Taller turbines generate more power, which puts greater loads on the gearbox and transmission system, requiring mechanical engineers to develop new ways of converting the ever-increasing torque into electrical power. Taller wind turbines also need stronger support towers and foundations. The list of challenges is long.

As turbines grow, so too does the noise they make. The dominant source of noise occurs at the outer edge of the blades. Here, turbulence caused by the blade itself creates a “hissing” sound as it passes over the trailing edge. More noise is created when the blade chops through atmospheric turbulence in the wind as it blows into the tower.

Noise isn’t just a matter of size. If one turbine is placed in the wake of another, the sound of its blades passing through the highly turbulent air created by the upstream turbine will be very loud.

Keeping noise under control requires inventive solutions, such as borrowing ideas from nature: the silent-flying owl uses serrated feathers to control noise and these are now being used to make noisy turbines quieter.




Read more:
Wind turbines aren’t quite ‘apex predators’, but the truth is far more interesting


Of course, engineering challenges are not the only considerations for creating wind farms. Environmental effects, noise, visual impacts and other community concerns all need to be considered, as with any large infrastructure project. But wind turbines are one of the most cost-effective and technologically sophisticated forms of renewable energy, and as the developed world comes to grips with climate change we will only see more of them.The Conversation

Con Doolan, Professor, School of Mechanical and Manufacturing Engineering, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia’s Largest Wind Farm Approved in Queensland


The link below is to an article reporting on the approval of Australia’s largest wind farm in Queensland.

For more visit:
https://www.theguardian.com/environment/2018/jun/05/australias-largest-windfarm-wins-planning-approval

Wind farms are hardly the bird slayers they’re made out to be. Here’s why


File 20170616 512 12qly6u
The potential to harm local birdlife is often used to oppose wind farm development. But research into how birds die shows wind farms should be the least of our concerns.
from www.shutterstock.com

Simon Chapman, University of Sydney

People who oppose wind farms often claim wind turbine blades kill large numbers of birds, often referring to them as “bird choppers”. And claims of dangers to iconic or rare birds, especially raptors, have attracted a lot of attention.

Wind turbine blades do indeed kill birds and bats, but their contribution to total bird deaths is extremely low, as these three studies show.

A 2009 study using US and European data on bird deaths estimated the number of birds killed per unit of power generated by wind, fossil fuel and nuclear power systems.

It concluded:

wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fuelled power stations are responsible for about 5.2 fatalities per GWh.

That’s nearly 15 times more. From this, the author estimated:

wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fuelled power plants 14.5 million.

In other words, for every one bird killed by a wind turbine, nuclear and fossil fuel powered plants killed 2,118 birds.

A Spanish study involved daily inspections of the ground around 20 wind farms with 252 turbines from 2005 to 2008. It found 596 dead birds.

The turbines in the sample had been working for different times during the study period (between 11 and 34 months), with the average annual number of fatalities per turbine being just 1.33. The authors noted this was one of the highest collision rates reported in the world research literature.

Raptor collisions accounted for 36% of total bird deaths (214 deaths), most of which were griffon vultures (138 birds, 23% of total mortality). The study area was in the southernmost area of Spain near Gibraltar, which is a migratory zone for birds from Morocco into Spain.

Perhaps the most comprehensive report was published in the journal Avian Conservation and Ecology in 2013 by scientists from Canada’s Environment Canada, Wildlife Research Division.

Their report looked at causes of human-related bird deaths for all of Canada, drawing together data from many diverse sources.

The table below shows selected causes of bird death out of an annual total of 186,429,553 estimated deaths caused by human activity.

https://datawrapper.dwcdn.net/Zg2hk/1/

Mark Duchamp, the president of Save the Eagles International is probably the most prominent person to speak out about bird deaths at wind farms. He says:

The average per turbine comes down to 333 to 1,000 deaths annually which is a far cry from the 2-4 birds claimed by the American wind industry or the 400,000 birds a year estimated by the American Bird Conservancy for the whole of the United States, which has about twice as many turbines as Spain.

Such claims from wind farm critics generally allude to massive national conspiracies to cover up the true size of the deaths.

And in Australia?

In Australia in 2006 a proposal for a 52-turbine wind farm plan on Victoria’s south-east coast at Bald Hills (now completed) was overruled by the then federal environment minister Ian Campbell.

He cited concerns about the future of the endangered orange-bellied parrot (Neophema chrysogaster), a migratory bird said to be at risk of extinction within 50 years. The Tarwin Valley Coastal Guardians, an anti wind farm group that had been opposing the proposed development.

Interest groups have regularly cited this endangered bird when trying to halt a range of developments.

These include a chemical storage facility and a boating marina. The proposed Westernport marina in Victoria happened to also be near an important wetland. But a professor in biodiversity and sustainability wrote:

the parrot copped the blame, even though it had not been seen there for 25 years.

Victoria’s planning minister at the time, Rob Hulls, described the Bald Hills decision as blatantly political, arguing the federal conservative government had been lobbied by fossil fuel interests to curtail renewable energy developments. Hulls said there had been:

some historical sightings, and also some potential foraging sites between 10 and 35 kilometres from the Bald Hills wind farm site that may or may not have been used by the orange-bellied parrot.

Perhaps the final word on this topic should go to the British Royal Society for the Protection of Birds. It built a wind turbine at its Bedfordshire headquarters to reduce its carbon emissions (and in doing so, aims to minimise species loss due to climate change). It recognised that wind power is far more beneficial to birds than it is harmful.


The ConversationSimon Chapman and Fiona Crichton’s book, Wind Turbine Syndrome: a communicated disease, will be published by Sydney University Press later this year.

Simon Chapman, Emeritus Professor in Public Health, University of Sydney

This article was originally published on The Conversation. Read the original article.

Who tilts at windmills? Explaining hostility to renewables


Marc Hudson, University of Manchester

Studying the catastrophe that has been Australian climate and energy policy these past 30 years is a thoroughly depressing business. When you read great work by Guy Pearse, Clive Hamilton, Maria Taylor and Phillip Chubb, among others, you find yourself asking “why”?

Why were we so stupid, so unrelentingly shortsighted? Why did the revelation in 2004 that John Howard had called a meeting of big business to help him slow the growth of renewables elicit no more than a shrug? Why did policy-makers attack renewable energy so unrelentingly?

About now, readers will be rolling their eyes and saying either “follow the money, stupid!” or “they are blinded by their marketophilia”. Fair enough, and they have a point.

My recently published paper, titled “Wind beneath their contempt: why Australian policymakers oppose solar and wind energy”
outlines the hostility to renewables from people like former treasurer Joe Hockey, who found the wind turbines around Canberra’s Lake George “utterly offensive”, and former prime minister Tony Abbott, who funded studies into the “potential health impacts” of wind farms.

It also deals with the policy-go-round that led to a drop in investment in renewables.

In a search for explanations for this, my paper looks at what we academics call “material factors”, such as party donations, post-career jobs, blame avoidance, diminished government capacity to act, and active disinformation by incumbents.

I then turn to ideological factors such as neoliberalism, the “growth at all costs” mindset, and of course climate denial.

Where it gets fun – and possibly controversial – is when I turn to psychological explanations such as what the sociologist Karl Mannheim called “the problem of generations”. This is best explained by a Douglas Adams quote:

Anything that is in the world when you’re born is normal and ordinary and is just a natural part of the way the world works.
Anything that’s invented between when you’re fifteen and thirty-five is new and exciting and revolutionary and you can probably get a career in it.
Anything invented after you’re thirty-five is against the natural order of things.

Over the past 50 years, white heterosexual middle-class males with engineering backgrounds have felt this pattern particularly keenly, as their world has shifted and changed around them. To quote my own research paper:

This loss of the promise of control over nature occurred – by coincidence – at the same time that the British empire disintegrated, and the US empire met its match in the jungles of Vietnam, and while feminism, civil rights and gay rights all sprang up. What scholars of the Anthropocene have come to call the “Great Acceleration” from the 1950s, was followed by the great (and still incomplete) democratisation of the 1960s and 1970s.

The rising popularity of solar panels represents a similar pattern of democratisation, and associated loss of control for those with a vested interest in conventional power generation, which would presumably be particularly threatening to those attracted to status, power and hierarchy.

Consider the cringe

Here are a couple more ideas and explanations that didn’t make the cut when I wrote the research paper. First up is the “biological cringe” – analogous to the “cultural cringe”, the self-loathing Australian assumption that all things British were better.

In Ecology and Empire: Environmental History of Settler Societies, the historian Tom Griffiths notes that:

Acclimatization societies systematically imported species that were regarded as useful, aesthetic or respectably wild to fill the perceived gaps in primitive Australian nature. This “biological cringe” was remarkably persistent and even informed twentieth-century preservation movements, when people came to feel that the remnants of the relic fauna, flora and peoples, genetically unable to fend for themselves, should be “saved”.

Second, and related, is the contempt and hatred that settler colonialists can feel towards wilderness, which in turn morphs into the ideology that there should be no limits on expansion and growth.

This means that people who speak of limits are inevitably attacked. One good example is Thomas Griffith Taylor (1880-1963), an Australian scientist who fell foul of the boosters who believed the country could and should support up to 500 million people.

Having seen his textbook banned in Western Australia for using the words “arid” and “desert”, Taylor set sail for the United States. At his farewell banquet at University of Sydney, he reinterpreted its motto Sidere mens eadem mutate (“The same spirit under a different sky”), as “Though the heavens fall I am of the same mind as my great-great-grandfather!”

I am anticipating that at least four groups will object to my speculations:
(vulgar) Marxists, for whom everything is about profits; positivists and Popperians, who will mutter about a lack of disprovability; deniers of climate science, who often don’t like being described as such; and finally, those who argue that renewables cannot possibly provide the energy return on investment required to run a modern industrial economy (who may or may not be right – we are about to find out).

The ConversationReader, of whatever category, what do you think?

Marc Hudson, PhD Candidate, Sustainable Consumption Institute, University of Manchester

This article was originally published on The Conversation. Read the original article.